{"title":"基于光流加权幅度和方向直方图的组合分类器异常视觉事件检测","authors":"Gajendra Singh, Rajiv Kapoor, A. Khosla","doi":"10.4018/IJCINI.20210701.OA2","DOIUrl":null,"url":null,"abstract":"Movement information of persons is a very vital feature for abnormality detection in crowded scenes. In this paper, a new method for detection of crowd escape event in video surveillance system is proposed. The proposed method detects abnormalities based on crowd motion pattern, considering both crowd motion magnitude and direction. Motion features are described by weighted-oriented histogram of optical flow magnitude (WOHOFM) and weighted-oriented histogram of optical flow direction (WOHOFD), which describes local motion pattern. The proposed method uses semi-supervised learning approach using combined classifier (KNN and K-Means) framework to detect abnormalities in motion pattern. The authors validate the effectiveness of the proposed approach on publicly available UMN, PETS2009, and Avanue datasets consisting of events like gathering, splitting, and running. The technique reported here has been found to outperform the recent findings reported in the literature.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"22 1","pages":"12-30"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical Flow-Based Weighted Magnitude and Direction Histograms for the Detection of Abnormal Visual Events Using Combined Classifier\",\"authors\":\"Gajendra Singh, Rajiv Kapoor, A. Khosla\",\"doi\":\"10.4018/IJCINI.20210701.OA2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movement information of persons is a very vital feature for abnormality detection in crowded scenes. In this paper, a new method for detection of crowd escape event in video surveillance system is proposed. The proposed method detects abnormalities based on crowd motion pattern, considering both crowd motion magnitude and direction. Motion features are described by weighted-oriented histogram of optical flow magnitude (WOHOFM) and weighted-oriented histogram of optical flow direction (WOHOFD), which describes local motion pattern. The proposed method uses semi-supervised learning approach using combined classifier (KNN and K-Means) framework to detect abnormalities in motion pattern. The authors validate the effectiveness of the proposed approach on publicly available UMN, PETS2009, and Avanue datasets consisting of events like gathering, splitting, and running. The technique reported here has been found to outperform the recent findings reported in the literature.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"22 1\",\"pages\":\"12-30\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCINI.20210701.OA2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20210701.OA2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optical Flow-Based Weighted Magnitude and Direction Histograms for the Detection of Abnormal Visual Events Using Combined Classifier
Movement information of persons is a very vital feature for abnormality detection in crowded scenes. In this paper, a new method for detection of crowd escape event in video surveillance system is proposed. The proposed method detects abnormalities based on crowd motion pattern, considering both crowd motion magnitude and direction. Motion features are described by weighted-oriented histogram of optical flow magnitude (WOHOFM) and weighted-oriented histogram of optical flow direction (WOHOFD), which describes local motion pattern. The proposed method uses semi-supervised learning approach using combined classifier (KNN and K-Means) framework to detect abnormalities in motion pattern. The authors validate the effectiveness of the proposed approach on publicly available UMN, PETS2009, and Avanue datasets consisting of events like gathering, splitting, and running. The technique reported here has been found to outperform the recent findings reported in the literature.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.