具有持久数据结构的高效、动态数据可视化

Joseph A. Cottam, A. Lumsdaine
{"title":"具有持久数据结构的高效、动态数据可视化","authors":"Joseph A. Cottam, A. Lumsdaine","doi":"10.1117/12.909581","DOIUrl":null,"url":null,"abstract":"Working with data that is changing while it is being worked on, so called \"dynamic data\", presents unique \nchallenges to a visualization and analysis framework. In particular, making rendering and analysis mutually exclusive \ncan quickly lead to either livelock in the analysis, unresponsive visuals or incorrect results. A framework's \ndata store is a common point of contention that often drives the mutual exclusion. Providing safe, synchronous \naccess to the data store eliminates the livelock scenarios and responsive visuals while maintaining result correctness. \nPersistent data structures are a technique for providing safe, synchronous access. They support safe, \nsynchronous access by directly supporting multiple versions of the data structure with limited data duplication. \nWith a persistent data structure, rendering acts on one version of the data structure while analysis updates \nanother, effectively double-buffering the central data store. Pre-rendering work based on global state (such as \nscaling all values relative to the global maximum) is also efficiently treated if independently modified versions \ncan be merged. The Stencil visualization system uses persistent data structures to achieve task-based parallelism \nbetween analysis, pre-rendering and rendering work with little synchronization overhead. With efficient \npersistent data structures, performance gains of several orders of magnitude are achieved.","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"12 1","pages":"82940X"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient, dynamic data visualization with persistent data structures\",\"authors\":\"Joseph A. Cottam, A. Lumsdaine\",\"doi\":\"10.1117/12.909581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working with data that is changing while it is being worked on, so called \\\"dynamic data\\\", presents unique \\nchallenges to a visualization and analysis framework. In particular, making rendering and analysis mutually exclusive \\ncan quickly lead to either livelock in the analysis, unresponsive visuals or incorrect results. A framework's \\ndata store is a common point of contention that often drives the mutual exclusion. Providing safe, synchronous \\naccess to the data store eliminates the livelock scenarios and responsive visuals while maintaining result correctness. \\nPersistent data structures are a technique for providing safe, synchronous access. They support safe, \\nsynchronous access by directly supporting multiple versions of the data structure with limited data duplication. \\nWith a persistent data structure, rendering acts on one version of the data structure while analysis updates \\nanother, effectively double-buffering the central data store. Pre-rendering work based on global state (such as \\nscaling all values relative to the global maximum) is also efficiently treated if independently modified versions \\ncan be merged. The Stencil visualization system uses persistent data structures to achieve task-based parallelism \\nbetween analysis, pre-rendering and rendering work with little synchronization overhead. With efficient \\npersistent data structures, performance gains of several orders of magnitude are achieved.\",\"PeriodicalId\":89305,\"journal\":{\"name\":\"Visualization and data analysis\",\"volume\":\"12 1\",\"pages\":\"82940X\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visualization and data analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.909581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.909581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

处理在处理过程中不断变化的数据,即所谓的“动态数据”,对可视化和分析框架提出了独特的挑战。特别是,使呈现和分析相互排斥可能会迅速导致分析中的停顿、无响应的视觉效果或不正确的结果。框架的数据存储是一个常见的争论点,经常导致互斥。提供对数据存储的安全、同步访问,消除了动态锁场景和响应性视觉效果,同时保持了结果的正确性。持久数据结构是一种提供安全、同步访问的技术。它们通过直接支持数据结构的多个版本和有限的数据重复来支持安全、同步的访问。对于持久数据结构,呈现作用于数据结构的一个版本,而分析更新另一个版本,从而有效地对中心数据存储进行双重缓冲。如果可以合并独立修改的版本,那么基于全局状态的预呈现工作(例如相对于全局最大值缩放所有值)也可以有效地处理。Stencil可视化系统使用持久的数据结构来实现基于任务的分析、预渲染和渲染工作之间的并行,并且同步开销很小。使用高效的持久数据结构,可以实现几个数量级的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient, dynamic data visualization with persistent data structures
Working with data that is changing while it is being worked on, so called "dynamic data", presents unique challenges to a visualization and analysis framework. In particular, making rendering and analysis mutually exclusive can quickly lead to either livelock in the analysis, unresponsive visuals or incorrect results. A framework's data store is a common point of contention that often drives the mutual exclusion. Providing safe, synchronous access to the data store eliminates the livelock scenarios and responsive visuals while maintaining result correctness. Persistent data structures are a technique for providing safe, synchronous access. They support safe, synchronous access by directly supporting multiple versions of the data structure with limited data duplication. With a persistent data structure, rendering acts on one version of the data structure while analysis updates another, effectively double-buffering the central data store. Pre-rendering work based on global state (such as scaling all values relative to the global maximum) is also efficiently treated if independently modified versions can be merged. The Stencil visualization system uses persistent data structures to achieve task-based parallelism between analysis, pre-rendering and rendering work with little synchronization overhead. With efficient persistent data structures, performance gains of several orders of magnitude are achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信