基于曲线显著性和深度卷积神经网络的眼底图像糖尿病视网膜病变分类

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY
V. T. H. Tuyet, N. T. Binh, D. T. Tin
{"title":"基于曲线显著性和深度卷积神经网络的眼底图像糖尿病视网膜病变分类","authors":"V. T. H. Tuyet, N. T. Binh, D. T. Tin","doi":"10.48084/etasr.4679","DOIUrl":null,"url":null,"abstract":"Retinal vessel images give a wide range of the abnormal pixels of patients. Therefore, classifying the diseases depending on fundus images is a popular approach. This paper proposes a new method to classify diabetic retinopathy in retinal blood vessel images based on curvelet saliency for segmentation. Our approach includes three periods: pre-processing of the quality of input images, calculating the saliency map based on curvelet coefficients, and classifying VGG16. To evaluate the results of the proposed method STARE and HRF datasets are used for testing with the Jaccard Index. The accuracy of the proposed method is about 98.42% and 97.96% with STARE and HRF datasets respectively.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"21 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving the Curvelet Saliency and Deep Convolutional Neural Networks for Diabetic Retinopathy Classification in Fundus Images\",\"authors\":\"V. T. H. Tuyet, N. T. Binh, D. T. Tin\",\"doi\":\"10.48084/etasr.4679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal vessel images give a wide range of the abnormal pixels of patients. Therefore, classifying the diseases depending on fundus images is a popular approach. This paper proposes a new method to classify diabetic retinopathy in retinal blood vessel images based on curvelet saliency for segmentation. Our approach includes three periods: pre-processing of the quality of input images, calculating the saliency map based on curvelet coefficients, and classifying VGG16. To evaluate the results of the proposed method STARE and HRF datasets are used for testing with the Jaccard Index. The accuracy of the proposed method is about 98.42% and 97.96% with STARE and HRF datasets respectively.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.4679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

视网膜血管图像提供了患者的大范围异常像素。因此,根据眼底图像对疾病进行分类是一种常用的方法。提出了一种基于曲线显著性分割的糖尿病视网膜病变视网膜血管图像分类方法。我们的方法包括三个阶段:输入图像的质量预处理、基于曲线系数的显著性图计算和VGG16分类。为了评估所提出的方法的结果,使用STARE和HRF数据集与Jaccard指数进行测试。该方法在STARE和HRF数据集上的准确率分别为98.42%和97.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Curvelet Saliency and Deep Convolutional Neural Networks for Diabetic Retinopathy Classification in Fundus Images
Retinal vessel images give a wide range of the abnormal pixels of patients. Therefore, classifying the diseases depending on fundus images is a popular approach. This paper proposes a new method to classify diabetic retinopathy in retinal blood vessel images based on curvelet saliency for segmentation. Our approach includes three periods: pre-processing of the quality of input images, calculating the saliency map based on curvelet coefficients, and classifying VGG16. To evaluate the results of the proposed method STARE and HRF datasets are used for testing with the Jaccard Index. The accuracy of the proposed method is about 98.42% and 97.96% with STARE and HRF datasets respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信