{"title":"基于合成等离子体液体的电子电路的实现——一个新概念","authors":"K. Pandya, S. Kosta","doi":"10.59566/ijbs.2016.12079","DOIUrl":null,"url":null,"abstract":"Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood –synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.","PeriodicalId":13852,"journal":{"name":"International Journal of Biomedical Science : IJBS","volume":"22 1","pages":"79 - 82"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept\",\"authors\":\"K. Pandya, S. Kosta\",\"doi\":\"10.59566/ijbs.2016.12079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood –synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.\",\"PeriodicalId\":13852,\"journal\":{\"name\":\"International Journal of Biomedical Science : IJBS\",\"volume\":\"22 1\",\"pages\":\"79 - 82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Science : IJBS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59566/ijbs.2016.12079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Science : IJBS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59566/ijbs.2016.12079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept
Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood –synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.