{"title":"一种预测凝析气藏相对渗透率的毛细管数依赖模型:鲁棒非线性回归分析","authors":"Mehdi Mahdaviara, A. Helalizadeh","doi":"10.2516/ogst/2020017","DOIUrl":null,"url":null,"abstract":"Well deliverability reduction as a result of liquid (condensate) build up in near well regions is an important deal in the development of gas condensate reservoirs. The relative permeability is an imperative factor for characterization of the aforementioned problem. The dependence of relative permeability on the coupled effects of Interfacial Tension (IFT) and flow velocity (capillary number) together with phase saturation is well established in the literature. In gas condensate reservoirs, however, the influence of IFT and velocity on this parameter becomes more evident. The current paper aims to establish a new model for predicting the relative permeability of gas condensate reservoirs by employing the direct interpolation technique. To this end, the regression analysis was carried out using seven sets of literature published experimental data. The validity analysis was executed by utilizing statistical parameters integrated with graphical descriptions. Furthermore, a comparison was carried out between the proposed model and some literature published empirical models. The results of the examination demonstrated that the new model outperformed other correlations from the standpoints of accuracy and reliability.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"34 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A proposed capillary number dependent model for prediction of relative permeability in gas condensate reservoirs: a robust non-linear regression analysis\",\"authors\":\"Mehdi Mahdaviara, A. Helalizadeh\",\"doi\":\"10.2516/ogst/2020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well deliverability reduction as a result of liquid (condensate) build up in near well regions is an important deal in the development of gas condensate reservoirs. The relative permeability is an imperative factor for characterization of the aforementioned problem. The dependence of relative permeability on the coupled effects of Interfacial Tension (IFT) and flow velocity (capillary number) together with phase saturation is well established in the literature. In gas condensate reservoirs, however, the influence of IFT and velocity on this parameter becomes more evident. The current paper aims to establish a new model for predicting the relative permeability of gas condensate reservoirs by employing the direct interpolation technique. To this end, the regression analysis was carried out using seven sets of literature published experimental data. The validity analysis was executed by utilizing statistical parameters integrated with graphical descriptions. Furthermore, a comparison was carried out between the proposed model and some literature published empirical models. The results of the examination demonstrated that the new model outperformed other correlations from the standpoints of accuracy and reliability.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2020017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A proposed capillary number dependent model for prediction of relative permeability in gas condensate reservoirs: a robust non-linear regression analysis
Well deliverability reduction as a result of liquid (condensate) build up in near well regions is an important deal in the development of gas condensate reservoirs. The relative permeability is an imperative factor for characterization of the aforementioned problem. The dependence of relative permeability on the coupled effects of Interfacial Tension (IFT) and flow velocity (capillary number) together with phase saturation is well established in the literature. In gas condensate reservoirs, however, the influence of IFT and velocity on this parameter becomes more evident. The current paper aims to establish a new model for predicting the relative permeability of gas condensate reservoirs by employing the direct interpolation technique. To this end, the regression analysis was carried out using seven sets of literature published experimental data. The validity analysis was executed by utilizing statistical parameters integrated with graphical descriptions. Furthermore, a comparison was carried out between the proposed model and some literature published empirical models. The results of the examination demonstrated that the new model outperformed other correlations from the standpoints of accuracy and reliability.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.