度量-仿射平面上的曲线缩短流

V. Rovenski
{"title":"度量-仿射平面上的曲线缩短流","authors":"V. Rovenski","doi":"10.3390/math8050701","DOIUrl":null,"url":null,"abstract":"We investigate for the first time the curve shortening flow in the metric-affine plane and prove that under simple geometric condition it shrinks a closed convex curve to a \"round point\" in finite time. This generalizes the classical result by M. Gage and R.S. Hamilton about convex curves in Euclidean plane.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Curve Shortening Flow in the Metric-Affine Plane\",\"authors\":\"V. Rovenski\",\"doi\":\"10.3390/math8050701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate for the first time the curve shortening flow in the metric-affine plane and prove that under simple geometric condition it shrinks a closed convex curve to a \\\"round point\\\" in finite time. This generalizes the classical result by M. Gage and R.S. Hamilton about convex curves in Euclidean plane.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/math8050701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/math8050701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次研究了度量-仿射平面上的曲线缩短流,证明了在简单几何条件下,它在有限时间内将闭合凸曲线收缩为一个“圆点”。推广了M. Gage和R.S. Hamilton关于欧几里得平面上凸曲线的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Curve Shortening Flow in the Metric-Affine Plane
We investigate for the first time the curve shortening flow in the metric-affine plane and prove that under simple geometric condition it shrinks a closed convex curve to a "round point" in finite time. This generalizes the classical result by M. Gage and R.S. Hamilton about convex curves in Euclidean plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信