{"title":"涡轮训练与令牌辍学","authors":"Tengda Han, Weidi Xie, Andrew Zisserman","doi":"10.48550/arXiv.2210.04889","DOIUrl":null,"url":null,"abstract":"The objective of this paper is an efficient training method for video tasks. We make three contributions: (1) We propose Turbo training, a simple and versatile training paradigm for Transformers on multiple video tasks. (2) We illustrate the advantages of Turbo training on action classification, video-language representation learning, and long-video activity classification, showing that Turbo training can largely maintain competitive performance while achieving almost 4X speed-up and significantly less memory consumption. (3) Turbo training enables long-schedule video-language training and end-to-end long-video training, delivering competitive or superior performance than previous works, which were infeasible to train under limited resources.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"2 1","pages":"622"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Turbo Training with Token Dropout\",\"authors\":\"Tengda Han, Weidi Xie, Andrew Zisserman\",\"doi\":\"10.48550/arXiv.2210.04889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is an efficient training method for video tasks. We make three contributions: (1) We propose Turbo training, a simple and versatile training paradigm for Transformers on multiple video tasks. (2) We illustrate the advantages of Turbo training on action classification, video-language representation learning, and long-video activity classification, showing that Turbo training can largely maintain competitive performance while achieving almost 4X speed-up and significantly less memory consumption. (3) Turbo training enables long-schedule video-language training and end-to-end long-video training, delivering competitive or superior performance than previous works, which were infeasible to train under limited resources.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"2 1\",\"pages\":\"622\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.04889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.04889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The objective of this paper is an efficient training method for video tasks. We make three contributions: (1) We propose Turbo training, a simple and versatile training paradigm for Transformers on multiple video tasks. (2) We illustrate the advantages of Turbo training on action classification, video-language representation learning, and long-video activity classification, showing that Turbo training can largely maintain competitive performance while achieving almost 4X speed-up and significantly less memory consumption. (3) Turbo training enables long-schedule video-language training and end-to-end long-video training, delivering competitive or superior performance than previous works, which were infeasible to train under limited resources.