基于LASSO和SCAD的缺失数据分位数模型半参数估计

IF 0.3 Q4 ECONOMICS
Aws Adnan Al-Tai, Qutaiba N. Nayef Al-Kazaz
{"title":"基于LASSO和SCAD的缺失数据分位数模型半参数估计","authors":"Aws Adnan Al-Tai, Qutaiba N. Nayef Al-Kazaz","doi":"10.33095/jeas.v28i133.2351","DOIUrl":null,"url":null,"abstract":"In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method","PeriodicalId":53940,"journal":{"name":"Eskisehir Osmangazi Universitesi IIBF Dergisi-Eskisehir Osmangazi University Journal of Economics and Administrative Sciences","volume":"53 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data\",\"authors\":\"Aws Adnan Al-Tai, Qutaiba N. Nayef Al-Kazaz\",\"doi\":\"10.33095/jeas.v28i133.2351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method\",\"PeriodicalId\":53940,\"journal\":{\"name\":\"Eskisehir Osmangazi Universitesi IIBF Dergisi-Eskisehir Osmangazi University Journal of Economics and Administrative Sciences\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eskisehir Osmangazi Universitesi IIBF Dergisi-Eskisehir Osmangazi University Journal of Economics and Administrative Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33095/jeas.v28i133.2351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eskisehir Osmangazi Universitesi IIBF Dergisi-Eskisehir Osmangazi University Journal of Economics and Administrative Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33095/jeas.v28i133.2351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们对LASSO和SCAD两种处理部分分位数回归模型的特殊方法进行了比较。(Nadaraya & Watson Kernel)对非参数部分进行估计,并采用经验法则法对平滑带宽(h)进行估计。惩罚法在估计回归系数时是有效的,但在使用均值插值法估计缺失数据后,基于均方误差准则(MSE)的SCAD方法是最好的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
20.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信