{"title":"拥塞网络中时变始末需求估计的非线性","authors":"S. Shafiei, M. Saberi, H. Vu","doi":"10.1109/ITSC.2019.8917357","DOIUrl":null,"url":null,"abstract":"Time-dependent origin-destination (TDOD) demand estimation is often formulated as a bi-level quadratic optimization in which the estimated demand in the upper-level problem is evaluated iteratively through a dynamic traffic assignment (DTA) model in the lower level. When congestion forms and propagates in the network, traditional solutions assuming a linear relation between demand flow and link flow become inaccurate and yield biased solutions. In this study, we study a sensitivity-based method taking into account the impact of other OD flows on the links’ traffic volumes and densities. Thereafter, we compare the performance of the proposed method with several well-established solution methods for TDOD demand estimation problem. The methods are applied to a benchmark study urban network and a major freeway corridor in Melbourne, Australia. We show that the incorporation of traffic density into flow-based models improves the accuracy of the estimated OD flows and assist solution algorithm in avoiding converging to a sub-optimal result. Moreover, the final results obtained from the proposed sensitivity-based method contains less amount of error while the method exceeds the problem’s computational intensity compared to the traditional linear method.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"1 1","pages":"3892-3897"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinearity in Time-Dependent Origin-Destination Demand Estimation in Congested Networks\",\"authors\":\"S. Shafiei, M. Saberi, H. Vu\",\"doi\":\"10.1109/ITSC.2019.8917357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-dependent origin-destination (TDOD) demand estimation is often formulated as a bi-level quadratic optimization in which the estimated demand in the upper-level problem is evaluated iteratively through a dynamic traffic assignment (DTA) model in the lower level. When congestion forms and propagates in the network, traditional solutions assuming a linear relation between demand flow and link flow become inaccurate and yield biased solutions. In this study, we study a sensitivity-based method taking into account the impact of other OD flows on the links’ traffic volumes and densities. Thereafter, we compare the performance of the proposed method with several well-established solution methods for TDOD demand estimation problem. The methods are applied to a benchmark study urban network and a major freeway corridor in Melbourne, Australia. We show that the incorporation of traffic density into flow-based models improves the accuracy of the estimated OD flows and assist solution algorithm in avoiding converging to a sub-optimal result. Moreover, the final results obtained from the proposed sensitivity-based method contains less amount of error while the method exceeds the problem’s computational intensity compared to the traditional linear method.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"1 1\",\"pages\":\"3892-3897\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinearity in Time-Dependent Origin-Destination Demand Estimation in Congested Networks
Time-dependent origin-destination (TDOD) demand estimation is often formulated as a bi-level quadratic optimization in which the estimated demand in the upper-level problem is evaluated iteratively through a dynamic traffic assignment (DTA) model in the lower level. When congestion forms and propagates in the network, traditional solutions assuming a linear relation between demand flow and link flow become inaccurate and yield biased solutions. In this study, we study a sensitivity-based method taking into account the impact of other OD flows on the links’ traffic volumes and densities. Thereafter, we compare the performance of the proposed method with several well-established solution methods for TDOD demand estimation problem. The methods are applied to a benchmark study urban network and a major freeway corridor in Melbourne, Australia. We show that the incorporation of traffic density into flow-based models improves the accuracy of the estimated OD flows and assist solution algorithm in avoiding converging to a sub-optimal result. Moreover, the final results obtained from the proposed sensitivity-based method contains less amount of error while the method exceeds the problem’s computational intensity compared to the traditional linear method.