{"title":"产品公式为重量两种新形式","authors":"H. Movasati, Younes Nikdelan","doi":"10.12957/cadmat.2020.48389","DOIUrl":null,"url":null,"abstract":"For a weight two newform $f$ attached to an elliptic curve $E$ defined over rational numbers we write $f=q\\prod_{n=1}^\\infty (1-q^n)^{g_n}, \\ g_n\\in\\Z$ and we observe that for some special elliptic curves $g_n$ is an increasing sequence of positive integers.","PeriodicalId":30267,"journal":{"name":"Cadernos do IME Serie Estatistica","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Product formulas for weight two newforms\",\"authors\":\"H. Movasati, Younes Nikdelan\",\"doi\":\"10.12957/cadmat.2020.48389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a weight two newform $f$ attached to an elliptic curve $E$ defined over rational numbers we write $f=q\\\\prod_{n=1}^\\\\infty (1-q^n)^{g_n}, \\\\ g_n\\\\in\\\\Z$ and we observe that for some special elliptic curves $g_n$ is an increasing sequence of positive integers.\",\"PeriodicalId\":30267,\"journal\":{\"name\":\"Cadernos do IME Serie Estatistica\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cadernos do IME Serie Estatistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12957/cadmat.2020.48389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do IME Serie Estatistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12957/cadmat.2020.48389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For a weight two newform $f$ attached to an elliptic curve $E$ defined over rational numbers we write $f=q\prod_{n=1}^\infty (1-q^n)^{g_n}, \ g_n\in\Z$ and we observe that for some special elliptic curves $g_n$ is an increasing sequence of positive integers.