TV-MOPSO在烧结钢优化中的性能

A. Mazahery, M. Shabani
{"title":"TV-MOPSO在烧结钢优化中的性能","authors":"A. Mazahery, M. Shabani","doi":"10.4149/km_2013_6_333","DOIUrl":null,"url":null,"abstract":"During the last decade novel computational methods have been introduced in some fields of engineering sciences. In this article, we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization, called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). The mechanical and tribological behaviors of sintered steel have been experimentally investigated. TV-MOPSO is made adaptive in nature by allowing its vital parameters to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. K e y w o r d s: wear, steel, swarm","PeriodicalId":18519,"journal":{"name":"Metallic Materials","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The performance of TV-MOPSO in optimization of sintered steels\",\"authors\":\"A. Mazahery, M. Shabani\",\"doi\":\"10.4149/km_2013_6_333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decade novel computational methods have been introduced in some fields of engineering sciences. In this article, we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization, called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). The mechanical and tribological behaviors of sintered steel have been experimentally investigated. TV-MOPSO is made adaptive in nature by allowing its vital parameters to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. K e y w o r d s: wear, steel, swarm\",\"PeriodicalId\":18519,\"journal\":{\"name\":\"Metallic Materials\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4149/km_2013_6_333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/km_2013_6_333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的十年中,新的计算方法被引入到工程科学的一些领域。在本文中,我们描述了一种新的粒子群优化(PSO)多目标优化方法,称为时变多目标粒子群优化(TV-MOPSO)。对烧结钢的力学和摩擦学性能进行了实验研究。TV-MOPSO通过允许其重要参数随迭代而变化而具有自适应特性。这种自适应有助于算法更有效地探索搜索空间。为了保证非支配前沿解之间有足够的多样性,同时又能保持收敛到pareto最优前沿,采用了一个新的多样性参数。让我们看看下面这几个词:磨损、钢铁、蜂群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The performance of TV-MOPSO in optimization of sintered steels
During the last decade novel computational methods have been introduced in some fields of engineering sciences. In this article, we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization, called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). The mechanical and tribological behaviors of sintered steel have been experimentally investigated. TV-MOPSO is made adaptive in nature by allowing its vital parameters to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. K e y w o r d s: wear, steel, swarm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信