与2x2一般无迹矩阵相关的代数的对称多项式

Şehmus Fındık, O. Kelekci
{"title":"与2x2一般无迹矩阵相关的代数的对称多项式","authors":"Şehmus Fındık, O. Kelekci","doi":"10.1142/S0218196721500521","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be two generic traceless matrices of size [Formula: see text] with entries from a commutative associative polynomial algebra over a field [Formula: see text] of characteristic zero. Consider the associative unitary algebra [Formula: see text], and its Lie subalgebra [Formula: see text] generated by [Formula: see text] and [Formula: see text] over the field [Formula: see text]. It is well known that the center [Formula: see text] of [Formula: see text] is the polynomial algebra generated by the algebraically independent commuting elements [Formula: see text], [Formula: see text], [Formula: see text]. We call a polynomial [Formula: see text] symmetric, if [Formula: see text]. The set of symmetric polynomials is equal to the algebra [Formula: see text] of invariants of symmetric group [Formula: see text]. Similarly, we define the Lie algebra [Formula: see text] of symmetric polynomials in the Lie algebra [Formula: see text]. We give the description of the algebras [Formula: see text] and [Formula: see text], and we provide finite sets of free generators for [Formula: see text], and [Formula: see text] as [Formula: see text]-modules.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"83 1","pages":"1433-1442"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric polynomials of algebras related with 2 × 2 generic traceless matrices\",\"authors\":\"Şehmus Fındık, O. Kelekci\",\"doi\":\"10.1142/S0218196721500521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] and [Formula: see text] be two generic traceless matrices of size [Formula: see text] with entries from a commutative associative polynomial algebra over a field [Formula: see text] of characteristic zero. Consider the associative unitary algebra [Formula: see text], and its Lie subalgebra [Formula: see text] generated by [Formula: see text] and [Formula: see text] over the field [Formula: see text]. It is well known that the center [Formula: see text] of [Formula: see text] is the polynomial algebra generated by the algebraically independent commuting elements [Formula: see text], [Formula: see text], [Formula: see text]. We call a polynomial [Formula: see text] symmetric, if [Formula: see text]. The set of symmetric polynomials is equal to the algebra [Formula: see text] of invariants of symmetric group [Formula: see text]. Similarly, we define the Lie algebra [Formula: see text] of symmetric polynomials in the Lie algebra [Formula: see text]. We give the description of the algebras [Formula: see text] and [Formula: see text], and we provide finite sets of free generators for [Formula: see text], and [Formula: see text] as [Formula: see text]-modules.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"83 1\",\"pages\":\"1433-1442\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196721500521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196721500521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]和[公式:见文]是两个大小为[公式:见文]的一般无迹矩阵,它们的项来自特征为零的域[公式:见文]上的交换结合多项式代数。考虑结合酉代数[公式:见文]和它的李子代数[公式:见文]由[公式:见文]和[公式:见文]在域[公式:见文]上生成。众所周知,[公式:见文]的中心[公式:见文]是由代数独立的交换元素[公式:见文]、[公式:见文]、[公式:见文]所生成的多项式代数。我们称多项式为对称的,如果[公式:见文本]。对称多项式的集合等于对称群的不变量的代数[公式:见文]。类似地,我们定义李代数[公式:见文]中对称多项式的李代数[公式:见文]。我们给出了代数[公式:见文]和[公式:见文]的描述,并为[公式:见文]和[公式:见文]提供了有限的自由生成器集作为[公式:见文]-模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric polynomials of algebras related with 2 × 2 generic traceless matrices
Let [Formula: see text] and [Formula: see text] be two generic traceless matrices of size [Formula: see text] with entries from a commutative associative polynomial algebra over a field [Formula: see text] of characteristic zero. Consider the associative unitary algebra [Formula: see text], and its Lie subalgebra [Formula: see text] generated by [Formula: see text] and [Formula: see text] over the field [Formula: see text]. It is well known that the center [Formula: see text] of [Formula: see text] is the polynomial algebra generated by the algebraically independent commuting elements [Formula: see text], [Formula: see text], [Formula: see text]. We call a polynomial [Formula: see text] symmetric, if [Formula: see text]. The set of symmetric polynomials is equal to the algebra [Formula: see text] of invariants of symmetric group [Formula: see text]. Similarly, we define the Lie algebra [Formula: see text] of symmetric polynomials in the Lie algebra [Formula: see text]. We give the description of the algebras [Formula: see text] and [Formula: see text], and we provide finite sets of free generators for [Formula: see text], and [Formula: see text] as [Formula: see text]-modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信