零杀伤向量场和III型变形

M. Aadne
{"title":"零杀伤向量场和III型变形","authors":"M. Aadne","doi":"10.1063/5.0018773","DOIUrl":null,"url":null,"abstract":"This paper is concerned with deformations of Kundt metrics in the direction of type $III$ tensors and nil-Killing vector fields whose flows give rise to such deformations. We find various characterizations within the Kundt class in terms of nil-Killing vector fields and obtain a theorem classifying algebraic stability of tensors, which has an application in finding sufficient criteria for a type $III$ deformation of the metric to preserve spi's. This is used in order to specify Lie algebras of nil-Killing vector fields that preserve the spi's, for degenerate Kundt metrics. Using this we discuss the characterization of Kundt-CSI spacetimes in terms of nil-Killing vector fields.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nil-Killing vector fields and type III deformations\",\"authors\":\"M. Aadne\",\"doi\":\"10.1063/5.0018773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with deformations of Kundt metrics in the direction of type $III$ tensors and nil-Killing vector fields whose flows give rise to such deformations. We find various characterizations within the Kundt class in terms of nil-Killing vector fields and obtain a theorem classifying algebraic stability of tensors, which has an application in finding sufficient criteria for a type $III$ deformation of the metric to preserve spi's. This is used in order to specify Lie algebras of nil-Killing vector fields that preserve the spi's, for degenerate Kundt metrics. Using this we discuss the characterization of Kundt-CSI spacetimes in terms of nil-Killing vector fields.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0018773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了昆特度量在III型张量方向上的变形,以及流引起这种变形的灭零向量场。我们在Kundt类中找到了各种关于零消灭向量场的表征,并得到了一个分类张量代数稳定性的定理,该定理在寻找度规III型变形保持spi的充分准则方面具有应用价值。这是用来指定零消灭向量场的李代数,保留spi,对于退化的昆特度量。利用这一点,我们讨论了Kundt-CSI时空在灭零矢量场中的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nil-Killing vector fields and type III deformations
This paper is concerned with deformations of Kundt metrics in the direction of type $III$ tensors and nil-Killing vector fields whose flows give rise to such deformations. We find various characterizations within the Kundt class in terms of nil-Killing vector fields and obtain a theorem classifying algebraic stability of tensors, which has an application in finding sufficient criteria for a type $III$ deformation of the metric to preserve spi's. This is used in order to specify Lie algebras of nil-Killing vector fields that preserve the spi's, for degenerate Kundt metrics. Using this we discuss the characterization of Kundt-CSI spacetimes in terms of nil-Killing vector fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信