协调流:基于规范化流的无监督MR协调

Farzad Beizaee, Christian Desrosiers, G. Lodygensky, J. Dolz
{"title":"协调流:基于规范化流的无监督MR协调","authors":"Farzad Beizaee, Christian Desrosiers, G. Lodygensky, J. Dolz","doi":"10.48550/arXiv.2301.11551","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an unsupervised framework based on normalizing flows that harmonizes MR images to mimic the distribution of the source domain. The proposed framework consists of three steps. First, a shallow harmonizer network is trained to recover images of the source domain from their augmented versions. A normalizing flow network is then trained to learn the distribution of the source domain. Finally, at test time, a harmonizer network is modified so that the output images match the source domain's distribution learned by the normalizing flow model. Our unsupervised, source-free and task-independent approach is evaluated on cross-domain brain MRI segmentation using data from four different sites. Results demonstrate its superior performance compared to existing methods.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"33 1","pages":"347-359"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harmonizing Flows: Unsupervised MR harmonization based on normalizing flows\",\"authors\":\"Farzad Beizaee, Christian Desrosiers, G. Lodygensky, J. Dolz\",\"doi\":\"10.48550/arXiv.2301.11551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an unsupervised framework based on normalizing flows that harmonizes MR images to mimic the distribution of the source domain. The proposed framework consists of three steps. First, a shallow harmonizer network is trained to recover images of the source domain from their augmented versions. A normalizing flow network is then trained to learn the distribution of the source domain. Finally, at test time, a harmonizer network is modified so that the output images match the source domain's distribution learned by the normalizing flow model. Our unsupervised, source-free and task-independent approach is evaluated on cross-domain brain MRI segmentation using data from four different sites. Results demonstrate its superior performance compared to existing methods.\",\"PeriodicalId\":73379,\"journal\":{\"name\":\"Information processing in medical imaging : proceedings of the ... conference\",\"volume\":\"33 1\",\"pages\":\"347-359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information processing in medical imaging : proceedings of the ... conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.11551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.11551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个基于规范化流的无监督框架,该框架协调MR图像以模拟源域的分布。提议的框架包括三个步骤。首先,训练浅谐器网络从增强图像中恢复源域图像。然后训练一个归一化流网络来学习源域的分布。最后,在测试时,修改谐波网络,使输出图像与归一化流模型学习到的源域分布相匹配。我们的无监督、无源和任务独立的方法使用来自四个不同地点的数据在跨域脑MRI分割上进行了评估。结果表明,与现有方法相比,该方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonizing Flows: Unsupervised MR harmonization based on normalizing flows
In this paper, we propose an unsupervised framework based on normalizing flows that harmonizes MR images to mimic the distribution of the source domain. The proposed framework consists of three steps. First, a shallow harmonizer network is trained to recover images of the source domain from their augmented versions. A normalizing flow network is then trained to learn the distribution of the source domain. Finally, at test time, a harmonizer network is modified so that the output images match the source domain's distribution learned by the normalizing flow model. Our unsupervised, source-free and task-independent approach is evaluated on cross-domain brain MRI segmentation using data from four different sites. Results demonstrate its superior performance compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信