基于ARIMA模型的生鲜农产品需求预测

Haoxiong Yang, Jing Hu
{"title":"基于ARIMA模型的生鲜农产品需求预测","authors":"Haoxiong Yang, Jing Hu","doi":"10.19026/AJFST.5.3172","DOIUrl":null,"url":null,"abstract":"The price of fresh agricultural products changes up and down recently. In order to accurately forecast the agricultural precuts demand, a forecasting model based on ARIMA is provided in this study. It can be found that asymmetric information and unbalance about supply and demand exist in the market through analyzing the reasons. The ARIMA model for fresh agricultural products can forecast the demand in order to providing some guides for farmers. The results show that the predictive value are in good condition when compare with the actual data. Then this model is available.","PeriodicalId":12775,"journal":{"name":"广东农业科学","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Forecasting of Fresh Agricultural Products Demand Based on the ARIMA Model\",\"authors\":\"Haoxiong Yang, Jing Hu\",\"doi\":\"10.19026/AJFST.5.3172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The price of fresh agricultural products changes up and down recently. In order to accurately forecast the agricultural precuts demand, a forecasting model based on ARIMA is provided in this study. It can be found that asymmetric information and unbalance about supply and demand exist in the market through analyzing the reasons. The ARIMA model for fresh agricultural products can forecast the demand in order to providing some guides for farmers. The results show that the predictive value are in good condition when compare with the actual data. Then this model is available.\",\"PeriodicalId\":12775,\"journal\":{\"name\":\"广东农业科学\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"广东农业科学\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.19026/AJFST.5.3172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"广东农业科学","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.19026/AJFST.5.3172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最近,新鲜农产品的价格有涨有跌。为了准确预测农业预采需求,本文建立了基于ARIMA的预采需求预测模型。通过对原因的分析,可以发现市场上存在着信息不对称和供需不平衡的现象。生鲜农产品ARIMA模型可以对生鲜农产品的需求进行预测,为农户提供一定的指导。结果表明,预测值与实际数据比较,效果良好。那么这个模型就可用了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting of Fresh Agricultural Products Demand Based on the ARIMA Model
The price of fresh agricultural products changes up and down recently. In order to accurately forecast the agricultural precuts demand, a forecasting model based on ARIMA is provided in this study. It can be found that asymmetric information and unbalance about supply and demand exist in the market through analyzing the reasons. The ARIMA model for fresh agricultural products can forecast the demand in order to providing some guides for farmers. The results show that the predictive value are in good condition when compare with the actual data. Then this model is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18226
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信