x射线透视中时间递归降噪的贝叶斯运动估计

T. Aach, D. Kunz
{"title":"x射线透视中时间递归降噪的贝叶斯运动估计","authors":"T. Aach,&nbsp;D. Kunz","doi":"10.1016/S0165-5817(98)00004-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops a Bayesian motion estimation algorithm for motion-compensated temporally recursive filtering of moving low-dose X-ray images (X-ray fluoroscopy). These images often exhibit a very low signal-to-noise ratio. The described motion estimation algorithm is made robust against noise by spatial and temporal regularization. A priori expectations about the spatial and temporal smoothness of the motion vector field are expressed by a generalized Gauss-Markov random field. The advantage of using a generalized Gauss-Markov random field is that, apart from smoothness, it also captures motion edges without requiring an edge detection threshold. The costs of edges are controlled by a single parameter, by means of which the influence of the regularization can be tuned from a median-filter-like behaviour to a linear-filter-like one.</p></div>","PeriodicalId":101018,"journal":{"name":"Philips Journal of Research","volume":"51 2","pages":"Pages 231-251"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0165-5817(98)00004-7","citationCount":"24","resultStr":"{\"title\":\"Bayesian motion estimation for temporally recursive noise reduction in X-ray fluoroscopy\",\"authors\":\"T. Aach,&nbsp;D. Kunz\",\"doi\":\"10.1016/S0165-5817(98)00004-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper develops a Bayesian motion estimation algorithm for motion-compensated temporally recursive filtering of moving low-dose X-ray images (X-ray fluoroscopy). These images often exhibit a very low signal-to-noise ratio. The described motion estimation algorithm is made robust against noise by spatial and temporal regularization. A priori expectations about the spatial and temporal smoothness of the motion vector field are expressed by a generalized Gauss-Markov random field. The advantage of using a generalized Gauss-Markov random field is that, apart from smoothness, it also captures motion edges without requiring an edge detection threshold. The costs of edges are controlled by a single parameter, by means of which the influence of the regularization can be tuned from a median-filter-like behaviour to a linear-filter-like one.</p></div>\",\"PeriodicalId\":101018,\"journal\":{\"name\":\"Philips Journal of Research\",\"volume\":\"51 2\",\"pages\":\"Pages 231-251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0165-5817(98)00004-7\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philips Journal of Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165581798000047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philips Journal of Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165581798000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种贝叶斯运动估计算法,用于运动补偿时间递归滤波的运动低剂量x射线图像(x射线透视)。这些图像通常表现出非常低的信噪比。所描述的运动估计算法通过时空正则化来增强对噪声的鲁棒性。用广义高斯-马尔可夫随机场表示运动向量场的时空平滑性的先验期望。使用广义高斯-马尔可夫随机场的优点是,除了平滑性之外,它还可以捕获运动边缘,而不需要边缘检测阈值。边的代价由单个参数控制,通过该参数可以将正则化的影响从类中值滤波器的行为调整为类线性滤波器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian motion estimation for temporally recursive noise reduction in X-ray fluoroscopy

This paper develops a Bayesian motion estimation algorithm for motion-compensated temporally recursive filtering of moving low-dose X-ray images (X-ray fluoroscopy). These images often exhibit a very low signal-to-noise ratio. The described motion estimation algorithm is made robust against noise by spatial and temporal regularization. A priori expectations about the spatial and temporal smoothness of the motion vector field are expressed by a generalized Gauss-Markov random field. The advantage of using a generalized Gauss-Markov random field is that, apart from smoothness, it also captures motion edges without requiring an edge detection threshold. The costs of edges are controlled by a single parameter, by means of which the influence of the regularization can be tuned from a median-filter-like behaviour to a linear-filter-like one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信