{"title":"一个6.8mW 7.4Gb/s时钟转发接收器,在65nm CMOS中具有高达300MHz的抖动跟踪","authors":"Masum Hossain, A. C. Carusone","doi":"10.1109/ISSCC.2010.5434007","DOIUrl":null,"url":null,"abstract":"High density multilink interfaces such as QPI and HyperTransport include a dedicated link to carry a synchronous clock from the transmitter to receiver and shared by 5 – 20 data transceivers. Sub-rate clocks ameliorate jitter amplification in lossy channels. The forwarded clock must be frequency-multiplied and aligned with the data at each receiver. Per pin deskewing is done at startup [1]; the optimum deskew setting is stored and the calibration circuitry turned off during normal operation. Jitter on the forwarded clock is correlated with jitter on the data because both are generated by the same transmitter. Hence, jitter tolerance is improved by retiming the data with a clock that tracks correlated jitter on the forwarded clock [2]. However, since the delay of the data and clock paths typically differ by several UI, very high frequency jitter will appear out-of-phase at the receiver and should not be tracked. For a delay mismatch of L UI between clock and data, jitter tolerance is improved by tracking jitter up to fbit /4L [2]. If the mismatch is 5UI, at 4Gb/s and 8Gb/s the clock path jitter tracking bandwidth (JTB) should be 200MHz and 400MHz respectively. In summary, the clock path in a clock forwarded transceiver should provide flexible clock multiplication, a controlled phase shift, and a JTB adjustable over 100's of MHz to accommodate different channel losses, bit rates, and path delay mismatches.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"15 1","pages":"158-159"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A 6.8mW 7.4Gb/s clock-forwarded receiver with up to 300MHz jitter tracking in 65nm CMOS\",\"authors\":\"Masum Hossain, A. C. Carusone\",\"doi\":\"10.1109/ISSCC.2010.5434007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High density multilink interfaces such as QPI and HyperTransport include a dedicated link to carry a synchronous clock from the transmitter to receiver and shared by 5 – 20 data transceivers. Sub-rate clocks ameliorate jitter amplification in lossy channels. The forwarded clock must be frequency-multiplied and aligned with the data at each receiver. Per pin deskewing is done at startup [1]; the optimum deskew setting is stored and the calibration circuitry turned off during normal operation. Jitter on the forwarded clock is correlated with jitter on the data because both are generated by the same transmitter. Hence, jitter tolerance is improved by retiming the data with a clock that tracks correlated jitter on the forwarded clock [2]. However, since the delay of the data and clock paths typically differ by several UI, very high frequency jitter will appear out-of-phase at the receiver and should not be tracked. For a delay mismatch of L UI between clock and data, jitter tolerance is improved by tracking jitter up to fbit /4L [2]. If the mismatch is 5UI, at 4Gb/s and 8Gb/s the clock path jitter tracking bandwidth (JTB) should be 200MHz and 400MHz respectively. In summary, the clock path in a clock forwarded transceiver should provide flexible clock multiplication, a controlled phase shift, and a JTB adjustable over 100's of MHz to accommodate different channel losses, bit rates, and path delay mismatches.\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"15 1\",\"pages\":\"158-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5434007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5434007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 6.8mW 7.4Gb/s clock-forwarded receiver with up to 300MHz jitter tracking in 65nm CMOS
High density multilink interfaces such as QPI and HyperTransport include a dedicated link to carry a synchronous clock from the transmitter to receiver and shared by 5 – 20 data transceivers. Sub-rate clocks ameliorate jitter amplification in lossy channels. The forwarded clock must be frequency-multiplied and aligned with the data at each receiver. Per pin deskewing is done at startup [1]; the optimum deskew setting is stored and the calibration circuitry turned off during normal operation. Jitter on the forwarded clock is correlated with jitter on the data because both are generated by the same transmitter. Hence, jitter tolerance is improved by retiming the data with a clock that tracks correlated jitter on the forwarded clock [2]. However, since the delay of the data and clock paths typically differ by several UI, very high frequency jitter will appear out-of-phase at the receiver and should not be tracked. For a delay mismatch of L UI between clock and data, jitter tolerance is improved by tracking jitter up to fbit /4L [2]. If the mismatch is 5UI, at 4Gb/s and 8Gb/s the clock path jitter tracking bandwidth (JTB) should be 200MHz and 400MHz respectively. In summary, the clock path in a clock forwarded transceiver should provide flexible clock multiplication, a controlled phase shift, and a JTB adjustable over 100's of MHz to accommodate different channel losses, bit rates, and path delay mismatches.