A. Bachtiar, O. Octaviani, Iqbal Fauzi, Sayak Roy, Lena Brunet-Errard, M. Mascle
{"title":"印尼高粘土低渗透油田表面活性剂SP配方设计","authors":"A. Bachtiar, O. Octaviani, Iqbal Fauzi, Sayak Roy, Lena Brunet-Errard, M. Mascle","doi":"10.2118/205566-ms","DOIUrl":null,"url":null,"abstract":"\n Indonesian oil and gas reserves have been depleting since 2000 with no major addition of new oil reserves. Therefore, it is imperative to increase national oil production by optimizing the mature fields through the implementation of successful EOR technology. Out of this approach, a comprehensive study has been carried out on the targeted field by exploring the potential of surfactant-polymer (SP) flooding. This article describes the formulation design, optimization, and lessons learned leading up to a successful and robust chemical EOR formulation designing for a low permeability and high clay (>20% clay) containing Indonesian oil field.\n The detailed workflow consists of analysis of fluid and rock characterization, tailor-made SP formulation designing, optimization and coreflood validation as presented in previous papers (Bazin, 2010). A series of surfactant formulation were designed and screened synthetically through a validated High Throughput Screening (HTS) methodology using a robotic platform combined with microfluidic tools for ultra-low interfacial tension (IFT), solubility, compatibility with brine and polymer. Rock mineralogy has played an important role due to heterogeneity and very high (>20%) clay content. Surfactants retention through adsorption on reservoir rocks was the main constraint to achieve high performance and economical chemical EOR for the targeted field. Specific strategies by optimizing the surfactant formulation and by injecting adsorption inhibitor thus needed to be deployed to mitigate high surfactant retention.\n The detailed laboratory screening experiments conclude that the designed robust SP formulation is able to induce ultra-low IFT, excellent solubility and compatibility at the injection water salinity. The dynamic coreflood experiment using reservoir rock shows high incremental oil recovery (>60% ROIP) in short SP slug injection.\n As expected from the nature of rock, adsorption was the main challenge encountered during the course of this study, which resulted in a very promising oil recovery in economically realistic conditions.","PeriodicalId":11052,"journal":{"name":"Day 3 Thu, October 14, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Robust Surfactant Based SP Formulation in High Clay Containing Low Permeability Indonesian Field\",\"authors\":\"A. Bachtiar, O. Octaviani, Iqbal Fauzi, Sayak Roy, Lena Brunet-Errard, M. Mascle\",\"doi\":\"10.2118/205566-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Indonesian oil and gas reserves have been depleting since 2000 with no major addition of new oil reserves. Therefore, it is imperative to increase national oil production by optimizing the mature fields through the implementation of successful EOR technology. Out of this approach, a comprehensive study has been carried out on the targeted field by exploring the potential of surfactant-polymer (SP) flooding. This article describes the formulation design, optimization, and lessons learned leading up to a successful and robust chemical EOR formulation designing for a low permeability and high clay (>20% clay) containing Indonesian oil field.\\n The detailed workflow consists of analysis of fluid and rock characterization, tailor-made SP formulation designing, optimization and coreflood validation as presented in previous papers (Bazin, 2010). A series of surfactant formulation were designed and screened synthetically through a validated High Throughput Screening (HTS) methodology using a robotic platform combined with microfluidic tools for ultra-low interfacial tension (IFT), solubility, compatibility with brine and polymer. Rock mineralogy has played an important role due to heterogeneity and very high (>20%) clay content. Surfactants retention through adsorption on reservoir rocks was the main constraint to achieve high performance and economical chemical EOR for the targeted field. Specific strategies by optimizing the surfactant formulation and by injecting adsorption inhibitor thus needed to be deployed to mitigate high surfactant retention.\\n The detailed laboratory screening experiments conclude that the designed robust SP formulation is able to induce ultra-low IFT, excellent solubility and compatibility at the injection water salinity. The dynamic coreflood experiment using reservoir rock shows high incremental oil recovery (>60% ROIP) in short SP slug injection.\\n As expected from the nature of rock, adsorption was the main challenge encountered during the course of this study, which resulted in a very promising oil recovery in economically realistic conditions.\",\"PeriodicalId\":11052,\"journal\":{\"name\":\"Day 3 Thu, October 14, 2021\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 14, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205566-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 14, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205566-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a Robust Surfactant Based SP Formulation in High Clay Containing Low Permeability Indonesian Field
Indonesian oil and gas reserves have been depleting since 2000 with no major addition of new oil reserves. Therefore, it is imperative to increase national oil production by optimizing the mature fields through the implementation of successful EOR technology. Out of this approach, a comprehensive study has been carried out on the targeted field by exploring the potential of surfactant-polymer (SP) flooding. This article describes the formulation design, optimization, and lessons learned leading up to a successful and robust chemical EOR formulation designing for a low permeability and high clay (>20% clay) containing Indonesian oil field.
The detailed workflow consists of analysis of fluid and rock characterization, tailor-made SP formulation designing, optimization and coreflood validation as presented in previous papers (Bazin, 2010). A series of surfactant formulation were designed and screened synthetically through a validated High Throughput Screening (HTS) methodology using a robotic platform combined with microfluidic tools for ultra-low interfacial tension (IFT), solubility, compatibility with brine and polymer. Rock mineralogy has played an important role due to heterogeneity and very high (>20%) clay content. Surfactants retention through adsorption on reservoir rocks was the main constraint to achieve high performance and economical chemical EOR for the targeted field. Specific strategies by optimizing the surfactant formulation and by injecting adsorption inhibitor thus needed to be deployed to mitigate high surfactant retention.
The detailed laboratory screening experiments conclude that the designed robust SP formulation is able to induce ultra-low IFT, excellent solubility and compatibility at the injection water salinity. The dynamic coreflood experiment using reservoir rock shows high incremental oil recovery (>60% ROIP) in short SP slug injection.
As expected from the nature of rock, adsorption was the main challenge encountered during the course of this study, which resulted in a very promising oil recovery in economically realistic conditions.