八面体球腔的梦融合

IF 4.7 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
K. Lan
{"title":"八面体球腔的梦融合","authors":"K. Lan","doi":"10.1063/5.0103362","DOIUrl":null,"url":null,"abstract":"The octahedral spherical hohlraum provides an ideal and practical approach for indirect-drive toward a dream fusion with predictable and reproducible gain and opens a route to the development of a laser drive system for multiple laser fusion schemes. This paper addresses a number of issues that have arisen with regard to octahedral spherical hohlraums, such as how to naturally generate a highly symmetric radiation drive at all times and for all spectra without the use of symmetry tuning technology, how to determine the three-dimensional, temporal, and spectral characteristics of the real radiation drive on a capsule in experiments, and the relative energy efficiency of an octahedral spherical hohlraum compared with a cylindrical hohlraum. A design island for an octahedral spherical hohlraum is presented. Finally, the challenges and future tasks for the path forward are presented.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"122 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Dream fusion in octahedral spherical hohlraum\",\"authors\":\"K. Lan\",\"doi\":\"10.1063/5.0103362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The octahedral spherical hohlraum provides an ideal and practical approach for indirect-drive toward a dream fusion with predictable and reproducible gain and opens a route to the development of a laser drive system for multiple laser fusion schemes. This paper addresses a number of issues that have arisen with regard to octahedral spherical hohlraums, such as how to naturally generate a highly symmetric radiation drive at all times and for all spectra without the use of symmetry tuning technology, how to determine the three-dimensional, temporal, and spectral characteristics of the real radiation drive on a capsule in experiments, and the relative energy efficiency of an octahedral spherical hohlraum compared with a cylindrical hohlraum. A design island for an octahedral spherical hohlraum is presented. Finally, the challenges and future tasks for the path forward are presented.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0103362\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0103362","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

摘要

八面体球腔为实现具有可预测和可重复增益的梦想聚变提供了一种理想和实用的间接驱动方法,并为开发多种激光聚变方案的激光驱动系统开辟了道路。本文讨论了八面体球面holholum存在的一些问题,如如何在不使用对称调谐技术的情况下在任何时间和所有光谱下自然产生高度对称的辐射驱动,如何确定实验中胶囊上真实辐射驱动的三维、时间和光谱特性,以及八面体球面holholum与圆柱holholum的相对能量效率。提出了一种八面体球面腔的设计岛。最后,提出了未来发展道路面临的挑战和任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dream fusion in octahedral spherical hohlraum
The octahedral spherical hohlraum provides an ideal and practical approach for indirect-drive toward a dream fusion with predictable and reproducible gain and opens a route to the development of a laser drive system for multiple laser fusion schemes. This paper addresses a number of issues that have arisen with regard to octahedral spherical hohlraums, such as how to naturally generate a highly symmetric radiation drive at all times and for all spectra without the use of symmetry tuning technology, how to determine the three-dimensional, temporal, and spectral characteristics of the real radiation drive on a capsule in experiments, and the relative energy efficiency of an octahedral spherical hohlraum compared with a cylindrical hohlraum. A design island for an octahedral spherical hohlraum is presented. Finally, the challenges and future tasks for the path forward are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信