l-LSTM:一种基于随机梯度下降优化的大数据序列标注的双向LSTM

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Nancy Victor, Daphne Lopez
{"title":"l-LSTM:一种基于随机梯度下降优化的大数据序列标注的双向LSTM","authors":"Nancy Victor, Daphne Lopez","doi":"10.4018/ijghpc.2020070101","DOIUrl":null,"url":null,"abstract":"The volume of data in diverse data formats from various data sources has led the way for a new drift in the digital world, Big Data. This article proposes sl-LSTM (sequence labelling LSTM), a neural network architecture that combines the effectiveness of typical LSTM models to perform sequence labeling tasks. This is a bi-directional LSTM which uses stochastic gradient descent optimization and combines two features of the existing LSTM variants: coupled input-forget gates for reducing the computational complexity and peephole connections that allow all gates to inspect the current cell state. The model is tested on different datasets and the results show that the integration of various neural network models can further improve the efficiency of approach for identifying sensitive information in Big data.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"19 1","pages":"1-16"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"sl-LSTM: A Bi-Directional LSTM With Stochastic Gradient Descent Optimization for Sequence Labeling Tasks in Big Data\",\"authors\":\"Nancy Victor, Daphne Lopez\",\"doi\":\"10.4018/ijghpc.2020070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume of data in diverse data formats from various data sources has led the way for a new drift in the digital world, Big Data. This article proposes sl-LSTM (sequence labelling LSTM), a neural network architecture that combines the effectiveness of typical LSTM models to perform sequence labeling tasks. This is a bi-directional LSTM which uses stochastic gradient descent optimization and combines two features of the existing LSTM variants: coupled input-forget gates for reducing the computational complexity and peephole connections that allow all gates to inspect the current cell state. The model is tested on different datasets and the results show that the integration of various neural network models can further improve the efficiency of approach for identifying sensitive information in Big data.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"19 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.2020070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.2020070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

摘要

来自各种数据源的各种数据格式的数据量引领了数字世界的新潮流——大数据。本文提出了一种神经网络结构sl-LSTM(序列标记LSTM),它结合了典型LSTM模型的有效性来执行序列标记任务。这是一种双向LSTM,它使用随机梯度下降优化,并结合了现有LSTM变体的两个特征:用于降低计算复杂性的耦合输入遗忘门和允许所有门检查当前细胞状态的窥视孔连接。在不同的数据集上对该模型进行了测试,结果表明,多种神经网络模型的集成可以进一步提高大数据中敏感信息识别方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
sl-LSTM: A Bi-Directional LSTM With Stochastic Gradient Descent Optimization for Sequence Labeling Tasks in Big Data
The volume of data in diverse data formats from various data sources has led the way for a new drift in the digital world, Big Data. This article proposes sl-LSTM (sequence labelling LSTM), a neural network architecture that combines the effectiveness of typical LSTM models to perform sequence labeling tasks. This is a bi-directional LSTM which uses stochastic gradient descent optimization and combines two features of the existing LSTM variants: coupled input-forget gates for reducing the computational complexity and peephole connections that allow all gates to inspect the current cell state. The model is tested on different datasets and the results show that the integration of various neural network models can further improve the efficiency of approach for identifying sensitive information in Big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信