{"title":"预算约束下七方模糊运输问题的目标规划方法","authors":"H. Khalifa","doi":"10.37190/ord200105","DOIUrl":null,"url":null,"abstract":"Transportation problem (TP) is a special type of linear programming problem (LPP) where the objective is to minimize the cost of distributing a product from several sources (or origins) to some destinations. This paper addresses a transportation problem in which the costs, supplies, and demands are represented as heptagonal fuzzy numbers. After converting the problem into the corresponding crisp TP using the ranking method, a goal programming (GP) approach is applied for obtaining the optimal solution. The advantage of GP for the decision-maker is easy to explain and implement in real life transportation. The stability set of the first kind corresponding to the optimal solution is determined. A numerical example is given to highlight the solution approach.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":"1 1","pages":"85-96"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Goal programming approach for solving heptagonal fuzzy transportation problem under budgetry constraint\",\"authors\":\"H. Khalifa\",\"doi\":\"10.37190/ord200105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transportation problem (TP) is a special type of linear programming problem (LPP) where the objective is to minimize the cost of distributing a product from several sources (or origins) to some destinations. This paper addresses a transportation problem in which the costs, supplies, and demands are represented as heptagonal fuzzy numbers. After converting the problem into the corresponding crisp TP using the ranking method, a goal programming (GP) approach is applied for obtaining the optimal solution. The advantage of GP for the decision-maker is easy to explain and implement in real life transportation. The stability set of the first kind corresponding to the optimal solution is determined. A numerical example is given to highlight the solution approach.\",\"PeriodicalId\":43244,\"journal\":{\"name\":\"Operations Research and Decisions\",\"volume\":\"1 1\",\"pages\":\"85-96\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research and Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/ord200105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord200105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Goal programming approach for solving heptagonal fuzzy transportation problem under budgetry constraint
Transportation problem (TP) is a special type of linear programming problem (LPP) where the objective is to minimize the cost of distributing a product from several sources (or origins) to some destinations. This paper addresses a transportation problem in which the costs, supplies, and demands are represented as heptagonal fuzzy numbers. After converting the problem into the corresponding crisp TP using the ranking method, a goal programming (GP) approach is applied for obtaining the optimal solution. The advantage of GP for the decision-maker is easy to explain and implement in real life transportation. The stability set of the first kind corresponding to the optimal solution is determined. A numerical example is given to highlight the solution approach.