随机切削库存问题的强化学习方法

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Anselmo R. Pitombeira-Neto , Arthur H.F. Murta
{"title":"随机切削库存问题的强化学习方法","authors":"Anselmo R. Pitombeira-Neto ,&nbsp;Arthur H.F. Murta","doi":"10.1016/j.ejco.2022.100027","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a formulation of the stochastic cutting stock problem as a discounted infinite-horizon Markov decision process. At each decision epoch, given current inventory of items, an agent chooses in which patterns to cut objects in stock in anticipation of the unknown demand. An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost. Since exact algorithms scale exponentially with the state-space dimension, we develop a heuristic solution approach based on reinforcement learning. We propose an approximate policy iteration algorithm in which we apply a linear model to approximate the action-value function of a policy. Policy evaluation is performed by solving the projected Bellman equation from a sample of state transitions, decisions and costs obtained by simulation. Due to the large decision space, policy improvement is performed via the cross-entropy method. Computational experiments are carried out with the use of realistic data to illustrate the application of the algorithm. Heuristic policies obtained with polynomial and Fourier basis functions are compared with myopic and random policies. Results indicate the possibility of obtaining policies capable of adequately controlling inventories with an average cost up to 80% lower than the cost obtained by a myopic policy.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100027"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S219244062200003X/pdfft?md5=135d32e50b9857c32c1577a7a14985fc&pid=1-s2.0-S219244062200003X-main.pdf","citationCount":"9","resultStr":"{\"title\":\"A reinforcement learning approach to the stochastic cutting stock problem\",\"authors\":\"Anselmo R. Pitombeira-Neto ,&nbsp;Arthur H.F. Murta\",\"doi\":\"10.1016/j.ejco.2022.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a formulation of the stochastic cutting stock problem as a discounted infinite-horizon Markov decision process. At each decision epoch, given current inventory of items, an agent chooses in which patterns to cut objects in stock in anticipation of the unknown demand. An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost. Since exact algorithms scale exponentially with the state-space dimension, we develop a heuristic solution approach based on reinforcement learning. We propose an approximate policy iteration algorithm in which we apply a linear model to approximate the action-value function of a policy. Policy evaluation is performed by solving the projected Bellman equation from a sample of state transitions, decisions and costs obtained by simulation. Due to the large decision space, policy improvement is performed via the cross-entropy method. Computational experiments are carried out with the use of realistic data to illustrate the application of the algorithm. Heuristic policies obtained with polynomial and Fourier basis functions are compared with myopic and random policies. Results indicate the possibility of obtaining policies capable of adequately controlling inventories with an average cost up to 80% lower than the cost obtained by a myopic policy.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"10 \",\"pages\":\"Article 100027\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S219244062200003X/pdfft?md5=135d32e50b9857c32c1577a7a14985fc&pid=1-s2.0-S219244062200003X-main.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S219244062200003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219244062200003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 9

摘要

提出了随机切削库存问题作为折现无限视界马尔可夫决策过程的一种表述。在每个决策时刻,给定当前物品的库存,智能体在预测未知需求的情况下选择以何种模式切割库存物品。最优解决方案对应于将每个状态与决策相关联并使预期总成本最小化的策略。由于精确算法随状态空间维度呈指数级增长,我们开发了一种基于强化学习的启发式解决方法。本文提出了一种近似策略迭代算法,该算法采用线性模型来近似策略的动作值函数。通过求解由模拟得到的状态转移、决策和成本样本的投影Bellman方程来执行策略评估。由于决策空间大,采用交叉熵方法进行策略改进。利用实际数据进行了计算实验,以说明该算法的应用。利用多项式和傅立叶基函数得到启发式策略,并与近视策略和随机策略进行了比较。结果表明,有可能获得能够充分控制库存的政策,其平均成本比短视政策所获得的成本低80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reinforcement learning approach to the stochastic cutting stock problem

We propose a formulation of the stochastic cutting stock problem as a discounted infinite-horizon Markov decision process. At each decision epoch, given current inventory of items, an agent chooses in which patterns to cut objects in stock in anticipation of the unknown demand. An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost. Since exact algorithms scale exponentially with the state-space dimension, we develop a heuristic solution approach based on reinforcement learning. We propose an approximate policy iteration algorithm in which we apply a linear model to approximate the action-value function of a policy. Policy evaluation is performed by solving the projected Bellman equation from a sample of state transitions, decisions and costs obtained by simulation. Due to the large decision space, policy improvement is performed via the cross-entropy method. Computational experiments are carried out with the use of realistic data to illustrate the application of the algorithm. Heuristic policies obtained with polynomial and Fourier basis functions are compared with myopic and random policies. Results indicate the possibility of obtaining policies capable of adequately controlling inventories with an average cost up to 80% lower than the cost obtained by a myopic policy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信