有序半群中区间的和与积

Pub Date : 2021-06-01 DOI:10.2478/auom-2021-0025
T. Glavosits, Zsolt Karácsony
{"title":"有序半群中区间的和与积","authors":"T. Glavosits, Zsolt Karácsony","doi":"10.2478/auom-2021-0025","DOIUrl":null,"url":null,"abstract":"Abstract We show a simple example for ordered semigroup 𝕊 = 𝕊 (+,⩽) that 𝕊 ⊆ℝ (ℝ denotes the real line) and ]a, b[ + ]c, d[ = ]a + c, b + d[ for all a, b, c, d ∈ 𝕊 such that a < b and c < d, but the intervals are no translation invariant, that is, the equation c +]a, b[ = ]c + a, c + b[ is not always fulfilled for all elements a, b, c ∈ 𝕊 such that a < b. The multiplicative version of the above example is shown too. The product of open intervals in the ordered ring of all integers (denoted by ℤ) is also investigated. Let Ix := {1, 2, . . ., x} for all x ∈ ℤ+ and defined the function g : ℤ+ → ℤ+ by g(x):=max{ y∈ℤ+|Iy⊆Ix⋅Ix } g\\left( x \\right): = \\max \\left\\{ {y \\in {\\mathbb{Z}_ + }|{I_y} \\subseteq {I_x} \\cdot {I_x}} \\right\\} for all x ∈ ℤ+. We give the function g implicitly using the famous Theorem of Chebishev. Finally, we formulate some questions concerning the above topics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sums and products of intervals in ordered semigroups\",\"authors\":\"T. Glavosits, Zsolt Karácsony\",\"doi\":\"10.2478/auom-2021-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show a simple example for ordered semigroup 𝕊 = 𝕊 (+,⩽) that 𝕊 ⊆ℝ (ℝ denotes the real line) and ]a, b[ + ]c, d[ = ]a + c, b + d[ for all a, b, c, d ∈ 𝕊 such that a < b and c < d, but the intervals are no translation invariant, that is, the equation c +]a, b[ = ]c + a, c + b[ is not always fulfilled for all elements a, b, c ∈ 𝕊 such that a < b. The multiplicative version of the above example is shown too. The product of open intervals in the ordered ring of all integers (denoted by ℤ) is also investigated. Let Ix := {1, 2, . . ., x} for all x ∈ ℤ+ and defined the function g : ℤ+ → ℤ+ by g(x):=max{ y∈ℤ+|Iy⊆Ix⋅Ix } g\\\\left( x \\\\right): = \\\\max \\\\left\\\\{ {y \\\\in {\\\\mathbb{Z}_ + }|{I_y} \\\\subseteq {I_x} \\\\cdot {I_x}} \\\\right\\\\} for all x ∈ ℤ+. We give the function g implicitly using the famous Theorem of Chebishev. Finally, we formulate some questions concerning the above topics.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要:我们给出了一个简单的例子,对于有序半群 = (+, ),它(∈∈a, b[+] c, d[=]a + c, b + d[对于所有的a, b, c, d∈,使得a < b和c < d,但区间不是平移不变量,即方程c +]a, b[=]c + a, c + b[对于所有的元素a, b, c∈,使得a < b并不总是满足。也给出了上述例子的乘法版本。本文还研究了所有整数(记为0)的有序环上开区间的乘积。令x:= {1,2,…,x,对于所有x}∈0 +,并定义函数g: 0 +→0 +:g(x):=max {y∈0 +| y≠Ix⋅Ix} g \left (x \right):= \max\left {{y\in{\mathbb{Z} _ +}|{ I_y }\subseteq I_x{}\cdot I_x{}}\right}对于所有x∈0 +。我们用著名的切比舍夫定理隐式地给出了函数g。最后,针对上述主题提出了一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sums and products of intervals in ordered semigroups
Abstract We show a simple example for ordered semigroup 𝕊 = 𝕊 (+,⩽) that 𝕊 ⊆ℝ (ℝ denotes the real line) and ]a, b[ + ]c, d[ = ]a + c, b + d[ for all a, b, c, d ∈ 𝕊 such that a < b and c < d, but the intervals are no translation invariant, that is, the equation c +]a, b[ = ]c + a, c + b[ is not always fulfilled for all elements a, b, c ∈ 𝕊 such that a < b. The multiplicative version of the above example is shown too. The product of open intervals in the ordered ring of all integers (denoted by ℤ) is also investigated. Let Ix := {1, 2, . . ., x} for all x ∈ ℤ+ and defined the function g : ℤ+ → ℤ+ by g(x):=max{ y∈ℤ+|Iy⊆Ix⋅Ix } g\left( x \right): = \max \left\{ {y \in {\mathbb{Z}_ + }|{I_y} \subseteq {I_x} \cdot {I_x}} \right\} for all x ∈ ℤ+. We give the function g implicitly using the famous Theorem of Chebishev. Finally, we formulate some questions concerning the above topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信