{"title":"Köthe-Bochner空间上的线性和连续算子","authors":"I. Chitescu, Razvan-Cornel Sfetcu","doi":"10.5186/AASFM.2019.4454","DOIUrl":null,"url":null,"abstract":"The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe spaces Lρ, which generalize the Lebesgue spaces L , the Orlicz spaces and many other functional spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we call “natural operators” and study here.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and continuous operators on Köthe–Bochner spaces\",\"authors\":\"I. Chitescu, Razvan-Cornel Sfetcu\",\"doi\":\"10.5186/AASFM.2019.4454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe spaces Lρ, which generalize the Lebesgue spaces L , the Orlicz spaces and many other functional spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we call “natural operators” and study here.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Linear and continuous operators on Köthe–Bochner spaces
The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe spaces Lρ, which generalize the Lebesgue spaces L , the Orlicz spaces and many other functional spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we call “natural operators” and study here.
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.