Köthe-Bochner空间上的线性和连续算子

IF 0.9 4区 数学 Q2 Mathematics
I. Chitescu, Razvan-Cornel Sfetcu
{"title":"Köthe-Bochner空间上的线性和连续算子","authors":"I. Chitescu, Razvan-Cornel Sfetcu","doi":"10.5186/AASFM.2019.4454","DOIUrl":null,"url":null,"abstract":"The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe spaces Lρ, which generalize the Lebesgue spaces L , the Orlicz spaces and many other functional spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we call “natural operators” and study here.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and continuous operators on Köthe–Bochner spaces\",\"authors\":\"I. Chitescu, Razvan-Cornel Sfetcu\",\"doi\":\"10.5186/AASFM.2019.4454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe spaces Lρ, which generalize the Lebesgue spaces L , the Orlicz spaces and many other functional spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we call “natural operators” and study here.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

Köthe-Bochner空间Lρ(E)是标量Köthe空间Lρ的向量值版本,它推广了Lebesgue空间L, Orlicz空间和许多其他泛函空间。本文研究了线性连续算子U: Lρ(E)→F,给出了它们的积分表示。这些算子生成算子V: Lρ→L(E,F),我们称之为“自然算子”,在这里进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear and continuous operators on Köthe–Bochner spaces
The Köthe–Bochner spaces Lρ(E) are the vector valued version of the scalar Köthe spaces Lρ, which generalize the Lebesgue spaces L , the Orlicz spaces and many other functional spaces. In the present paper we study the linear and continuous operators U : Lρ(E) → F , giving integral representations for them. These operators generate operators V : Lρ → L(E,F ) which we call “natural operators” and study here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信