Yaguang Li, Han Su, Ugur Demiryurek, Bolong Zheng, Kai Zeng, C. Shahabi
{"title":"PerNav:一个用于个性化导航的路线汇总框架","authors":"Yaguang Li, Han Su, Ugur Demiryurek, Bolong Zheng, Kai Zeng, C. Shahabi","doi":"10.1145/2882903.2899384","DOIUrl":null,"url":null,"abstract":"In this paper, we study a route summarization framework for Personalized Navigation dubbed PerNav - with which the goal is to generate more intuitive and customized turn-by-turn directions based on user generated content. The turn-by-turn directions provided in the existing navigation applications are exclusively derived from underlying road network topology information i.e., the connectivity of nodes to each other. Therefore, the turn-by-turn directions are simplified as metric translation of physical world (e.g. distance/time to turn) to spoken language. Such translation- that ignores human cognition about the geographic space- is often verbose and redundant for the drivers who have knowledge about the geographical areas. PerNav utilizes wealth of user generated historical trajectory data to extract namely \"landmarks\" (e.g., point of interests or intersections) and frequently visited routes between them from the road network. Then this extracted information is used to obtain cognitive turn-by-turn directions customized for each user.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PerNav: A Route Summarization Framework for Personalized Navigation\",\"authors\":\"Yaguang Li, Han Su, Ugur Demiryurek, Bolong Zheng, Kai Zeng, C. Shahabi\",\"doi\":\"10.1145/2882903.2899384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a route summarization framework for Personalized Navigation dubbed PerNav - with which the goal is to generate more intuitive and customized turn-by-turn directions based on user generated content. The turn-by-turn directions provided in the existing navigation applications are exclusively derived from underlying road network topology information i.e., the connectivity of nodes to each other. Therefore, the turn-by-turn directions are simplified as metric translation of physical world (e.g. distance/time to turn) to spoken language. Such translation- that ignores human cognition about the geographic space- is often verbose and redundant for the drivers who have knowledge about the geographical areas. PerNav utilizes wealth of user generated historical trajectory data to extract namely \\\"landmarks\\\" (e.g., point of interests or intersections) and frequently visited routes between them from the road network. Then this extracted information is used to obtain cognitive turn-by-turn directions customized for each user.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PerNav: A Route Summarization Framework for Personalized Navigation
In this paper, we study a route summarization framework for Personalized Navigation dubbed PerNav - with which the goal is to generate more intuitive and customized turn-by-turn directions based on user generated content. The turn-by-turn directions provided in the existing navigation applications are exclusively derived from underlying road network topology information i.e., the connectivity of nodes to each other. Therefore, the turn-by-turn directions are simplified as metric translation of physical world (e.g. distance/time to turn) to spoken language. Such translation- that ignores human cognition about the geographic space- is often verbose and redundant for the drivers who have knowledge about the geographical areas. PerNav utilizes wealth of user generated historical trajectory data to extract namely "landmarks" (e.g., point of interests or intersections) and frequently visited routes between them from the road network. Then this extracted information is used to obtain cognitive turn-by-turn directions customized for each user.