斯太尔河未来几年的径流量预测

{"title":"斯太尔河未来几年的径流量预测","authors":"","doi":"10.26565/2410-7360-2021-54-12","DOIUrl":null,"url":null,"abstract":"Formulation of the problem. The water flow of the Styr River is using for the needs of industry, agriculture and the population. Thus, forecasting the water flow of this river for the future is an important scientific and practical task. The hydrological forecasts that have a lead time of one year, two years, or a decade are not as reliable as they need to be. Now in the world this problem is not solved. Along with quantitative forecasting methods, the qualitative methods have also been developed. The method of commensurability refers to such methods. It was developed by Chinese geophysicist Weng Wen-Bo in 1984. The commensurability method supports prediction of various natural phenomena, including floods and other dangerous events. The objective of this paper is to use the Weng Wen-Bo method for long-term water flow forecasting of the Styr River at Lutsk city. Methods. The commensurability method uses the dates on which natural phenomena (earthquakes, floods, droughts, etc.) were observed. For this reason, it has been called the information method. It is characterized by simplicity of calculation, graphical visualization, the use of researcher intuition and minimum needs for input information. There are several ways of forecasting using the method of commensurability. This paper is used a method of forecasting by two-dimensional commensurability graphs. Such approach consists in the determining the commensurability values in the dates array of certain phenomena occurrence and creating a two-dimensional graph of commensurability, according to which forecasting occurs. The use of such a method allows determining the years that may be wet and dry in the near future. Results. The data of observations at the hydrological station of the Styr River - Lutsk city for the period 1923-2017 are used in the paper. The results of the study on the commensurability method show that the water flow of the river Styr in 2020-2021 should be more than the norm and in 2023-2024 - less than the norm. Scientific novelty and practical significance. In Ukraine the commensurability method was used for the first time for long-term forecasting of water flow for coming years. The estimating of the effectiveness of forecasting by the commensurability method requires an array of long-term forecasts. Therefore, the next step of the study should be to forecast of water flow on different rivers, but provided that they have the long series of observation. The results of the long-term forecasting will enable the relevant services the negative consequences of a hydrological phenomenon, such as low water flow or floods on rivers will prevent.","PeriodicalId":52802,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The forecasting of water runoff of the Styr river for the coming years\",\"authors\":\"\",\"doi\":\"10.26565/2410-7360-2021-54-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formulation of the problem. The water flow of the Styr River is using for the needs of industry, agriculture and the population. Thus, forecasting the water flow of this river for the future is an important scientific and practical task. The hydrological forecasts that have a lead time of one year, two years, or a decade are not as reliable as they need to be. Now in the world this problem is not solved. Along with quantitative forecasting methods, the qualitative methods have also been developed. The method of commensurability refers to such methods. It was developed by Chinese geophysicist Weng Wen-Bo in 1984. The commensurability method supports prediction of various natural phenomena, including floods and other dangerous events. The objective of this paper is to use the Weng Wen-Bo method for long-term water flow forecasting of the Styr River at Lutsk city. Methods. The commensurability method uses the dates on which natural phenomena (earthquakes, floods, droughts, etc.) were observed. For this reason, it has been called the information method. It is characterized by simplicity of calculation, graphical visualization, the use of researcher intuition and minimum needs for input information. There are several ways of forecasting using the method of commensurability. This paper is used a method of forecasting by two-dimensional commensurability graphs. Such approach consists in the determining the commensurability values in the dates array of certain phenomena occurrence and creating a two-dimensional graph of commensurability, according to which forecasting occurs. The use of such a method allows determining the years that may be wet and dry in the near future. Results. The data of observations at the hydrological station of the Styr River - Lutsk city for the period 1923-2017 are used in the paper. The results of the study on the commensurability method show that the water flow of the river Styr in 2020-2021 should be more than the norm and in 2023-2024 - less than the norm. Scientific novelty and practical significance. In Ukraine the commensurability method was used for the first time for long-term forecasting of water flow for coming years. The estimating of the effectiveness of forecasting by the commensurability method requires an array of long-term forecasts. Therefore, the next step of the study should be to forecast of water flow on different rivers, but provided that they have the long series of observation. The results of the long-term forecasting will enable the relevant services the negative consequences of a hydrological phenomenon, such as low water flow or floods on rivers will prevent.\",\"PeriodicalId\":52802,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2410-7360-2021-54-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2410-7360-2021-54-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

问题的表述。斯太尔河的水流被用来满足工业、农业和人口的需要。因此,预测黄河未来的水流量是一项重要的科学和现实任务。提前一年、两年或十年的水文预报并不像它们需要的那样可靠。现在这个问题在世界上还没有解决。在定量预测方法的同时,定性预测方法也得到了发展。可通约性方法是指这些方法。它是1984年由中国地球物理学家翁文波提出的。可通约性方法支持各种自然现象的预测,包括洪水和其他危险事件。本文的目的是利用翁文波方法对卢茨克市斯泰尔河进行长期水流量预报。可通约性方法使用观测到自然现象(地震、洪水、干旱等)的日期。由于这个原因,它被称为信息方法。它的特点是计算简单,图形可视化,使用研究者的直觉和输入信息的需求最小。有几种使用可通约性方法进行预测的方法。本文采用了二维通约度图的预测方法。这种方法包括确定某些现象发生的日期数组中的可通约性值,并创建可通约性的二维图表,根据该图表进行预测。使用这种方法可以确定在不久的将来可能潮湿和干燥的年份。本文使用了1923-2017年卢茨克市斯泰尔河水文站的观测数据。可通约性方法研究结果表明,施蒂尔河2020-2021年水量大于正常值,2023-2024年水量小于正常值。具有科学新颖性和现实意义。在乌克兰,首次使用可通约性方法对未来几年的水流量进行长期预报。用可通约性方法估计预报的有效性需要大量的长期预报。因此,下一步的研究应该是对不同河流的水流量进行预测,但前提是它们有较长的观测序列。长期预报的结果将使有关部门能够预防水文现象的负面后果,例如河水流量减少或洪水泛滥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The forecasting of water runoff of the Styr river for the coming years
Formulation of the problem. The water flow of the Styr River is using for the needs of industry, agriculture and the population. Thus, forecasting the water flow of this river for the future is an important scientific and practical task. The hydrological forecasts that have a lead time of one year, two years, or a decade are not as reliable as they need to be. Now in the world this problem is not solved. Along with quantitative forecasting methods, the qualitative methods have also been developed. The method of commensurability refers to such methods. It was developed by Chinese geophysicist Weng Wen-Bo in 1984. The commensurability method supports prediction of various natural phenomena, including floods and other dangerous events. The objective of this paper is to use the Weng Wen-Bo method for long-term water flow forecasting of the Styr River at Lutsk city. Methods. The commensurability method uses the dates on which natural phenomena (earthquakes, floods, droughts, etc.) were observed. For this reason, it has been called the information method. It is characterized by simplicity of calculation, graphical visualization, the use of researcher intuition and minimum needs for input information. There are several ways of forecasting using the method of commensurability. This paper is used a method of forecasting by two-dimensional commensurability graphs. Such approach consists in the determining the commensurability values in the dates array of certain phenomena occurrence and creating a two-dimensional graph of commensurability, according to which forecasting occurs. The use of such a method allows determining the years that may be wet and dry in the near future. Results. The data of observations at the hydrological station of the Styr River - Lutsk city for the period 1923-2017 are used in the paper. The results of the study on the commensurability method show that the water flow of the river Styr in 2020-2021 should be more than the norm and in 2023-2024 - less than the norm. Scientific novelty and practical significance. In Ukraine the commensurability method was used for the first time for long-term forecasting of water flow for coming years. The estimating of the effectiveness of forecasting by the commensurability method requires an array of long-term forecasts. Therefore, the next step of the study should be to forecast of water flow on different rivers, but provided that they have the long series of observation. The results of the long-term forecasting will enable the relevant services the negative consequences of a hydrological phenomenon, such as low water flow or floods on rivers will prevent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信