具有统计安全性的网络不可知MPC

Ananya Appan, Ashish Choudhury
{"title":"具有统计安全性的网络不可知MPC","authors":"Ananya Appan, Ashish Choudhury","doi":"10.48550/arXiv.2306.01401","DOIUrl":null,"url":null,"abstract":"We initiate the study of the network agnostic MPC protocols with statistical security. Network agnostic protocols give the best possible security guarantees irrespective of the underlying network type. We consider the general-adversary model, where the adversary is characterized by an adversary structure which enumerates all possible candidate subsets of corrupt parties. The $\\mathcal{Q}^{(k)}$ condition enforces that the union of no $k$ subsets from the adversary structure covers the party set. Given an unconditionally-secure PKI setup, known statistically-secure synchronous MPC protocols are secure against adversary structures satisfying the $\\mathcal{Q}^{(2)}$ condition. Known statistically-secure asynchronous MPC protocols can tolerate $\\mathcal{Q}^{(3)}$ adversary structures. Fix a set of $n$ parties $\\mathcal{P} = \\{P_1, ... ,P_n\\}$ and adversary structures $\\mathcal{Z}_s$ and $\\mathcal{Z}_a$, satisfying the $\\mathcal{Q}^{(2)}$ and $\\mathcal{Q}^{(3)}$ conditions respectively, where $\\mathcal{Z}_a \\subset \\mathcal{Z}_s$. Then, given an unconditionally-secure PKI, we ask whether it is possible to design a statistically-secure MPC protocol resilient against $\\mathcal{Z}_s$ and $\\mathcal{Z}_a$ in a synchronous and an asynchronous network respectively if the parties in $\\mathcal{P}$ are unaware of the network type. We show that it is possible iff $\\mathcal{Z}_s$ and $\\mathcal{Z}_a$ satisfy the $\\mathcal{Q}^{(2,1)}$ condition, meaning that the union of any two subsets from $\\mathcal{Z}_s$ and any one subset from $\\mathcal{Z}_a$ is a proper subset of $\\mathcal{P}$. We design several important network agnostic building blocks with the $\\mathcal{Q}^{(2,1)}$ condition, such as Byzantine broadcast, Byzantine agreement, information checking protocol, verifiable secret-sharing and secure multiplication protocol, whose complexity is polynomial in $n$ and $|\\mathcal{Z}_s|$.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"34 1","pages":"820"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Network Agnostic MPC with Statistical Security\",\"authors\":\"Ananya Appan, Ashish Choudhury\",\"doi\":\"10.48550/arXiv.2306.01401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of the network agnostic MPC protocols with statistical security. Network agnostic protocols give the best possible security guarantees irrespective of the underlying network type. We consider the general-adversary model, where the adversary is characterized by an adversary structure which enumerates all possible candidate subsets of corrupt parties. The $\\\\mathcal{Q}^{(k)}$ condition enforces that the union of no $k$ subsets from the adversary structure covers the party set. Given an unconditionally-secure PKI setup, known statistically-secure synchronous MPC protocols are secure against adversary structures satisfying the $\\\\mathcal{Q}^{(2)}$ condition. Known statistically-secure asynchronous MPC protocols can tolerate $\\\\mathcal{Q}^{(3)}$ adversary structures. Fix a set of $n$ parties $\\\\mathcal{P} = \\\\{P_1, ... ,P_n\\\\}$ and adversary structures $\\\\mathcal{Z}_s$ and $\\\\mathcal{Z}_a$, satisfying the $\\\\mathcal{Q}^{(2)}$ and $\\\\mathcal{Q}^{(3)}$ conditions respectively, where $\\\\mathcal{Z}_a \\\\subset \\\\mathcal{Z}_s$. Then, given an unconditionally-secure PKI, we ask whether it is possible to design a statistically-secure MPC protocol resilient against $\\\\mathcal{Z}_s$ and $\\\\mathcal{Z}_a$ in a synchronous and an asynchronous network respectively if the parties in $\\\\mathcal{P}$ are unaware of the network type. We show that it is possible iff $\\\\mathcal{Z}_s$ and $\\\\mathcal{Z}_a$ satisfy the $\\\\mathcal{Q}^{(2,1)}$ condition, meaning that the union of any two subsets from $\\\\mathcal{Z}_s$ and any one subset from $\\\\mathcal{Z}_a$ is a proper subset of $\\\\mathcal{P}$. We design several important network agnostic building blocks with the $\\\\mathcal{Q}^{(2,1)}$ condition, such as Byzantine broadcast, Byzantine agreement, information checking protocol, verifiable secret-sharing and secure multiplication protocol, whose complexity is polynomial in $n$ and $|\\\\mathcal{Z}_s|$.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"34 1\",\"pages\":\"820\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.01401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.01401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开始研究具有统计安全性的网络不可知MPC协议。无论底层网络类型如何,网络不可知协议都能提供最好的安全保证。我们考虑一般对手模型,其中对手的特征是对手结构,该结构列举了腐败政党的所有可能候选子集。$\mathcal{Q}^{(k)}$条件强制对手结构中没有$k$子集的并集覆盖party集。给定无条件安全的PKI设置,已知的统计安全同步MPC协议对于满足$\mathcal{Q}^{(2)}$条件的攻击结构是安全的。已知的统计安全异步MPC协议可以容忍$\mathcal{Q}^{(3)}$敌对结构。修复一组$n$ parties $\mathcal{P} = \{P_1,…,P_n\}$和对手结构$\mathcal{Z}_s$和$\mathcal{Z}_a$,分别满足$\mathcal{Q}^{(2)}$和$\mathcal{Q}^{(3)}$条件,其中$\mathcal{Z}_a \子集\mathcal{Z}_s$。然后,给定一个无条件安全的PKI,我们问如果$\mathcal{P}$中的各方不知道网络类型,是否有可能在同步和异步网络中分别设计一个统计安全的MPC协议,以抵御$\mathcal{Z}_s$和$\mathcal{Z}_a$。我们证明了$\mathcal{Z}_s$和$\mathcal{Z}_a$满足$\mathcal{Q}^{(2,1)}$的条件是可能的,这意味着$\mathcal{Z}_s$的任意两个子集和$\mathcal{Z}_a$的任意一个子集的并集是$\mathcal{P}$的固有子集。我们利用$\mathcal{Q}^{(2,1)}$条件设计了几个重要的网络不可知论构建块,如Byzantine广播、Byzantine协议、信息检查协议、可验证秘密共享和安全乘法协议,它们的复杂度在$n$和$|\mathcal{Z}_s|$中都是多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Agnostic MPC with Statistical Security
We initiate the study of the network agnostic MPC protocols with statistical security. Network agnostic protocols give the best possible security guarantees irrespective of the underlying network type. We consider the general-adversary model, where the adversary is characterized by an adversary structure which enumerates all possible candidate subsets of corrupt parties. The $\mathcal{Q}^{(k)}$ condition enforces that the union of no $k$ subsets from the adversary structure covers the party set. Given an unconditionally-secure PKI setup, known statistically-secure synchronous MPC protocols are secure against adversary structures satisfying the $\mathcal{Q}^{(2)}$ condition. Known statistically-secure asynchronous MPC protocols can tolerate $\mathcal{Q}^{(3)}$ adversary structures. Fix a set of $n$ parties $\mathcal{P} = \{P_1, ... ,P_n\}$ and adversary structures $\mathcal{Z}_s$ and $\mathcal{Z}_a$, satisfying the $\mathcal{Q}^{(2)}$ and $\mathcal{Q}^{(3)}$ conditions respectively, where $\mathcal{Z}_a \subset \mathcal{Z}_s$. Then, given an unconditionally-secure PKI, we ask whether it is possible to design a statistically-secure MPC protocol resilient against $\mathcal{Z}_s$ and $\mathcal{Z}_a$ in a synchronous and an asynchronous network respectively if the parties in $\mathcal{P}$ are unaware of the network type. We show that it is possible iff $\mathcal{Z}_s$ and $\mathcal{Z}_a$ satisfy the $\mathcal{Q}^{(2,1)}$ condition, meaning that the union of any two subsets from $\mathcal{Z}_s$ and any one subset from $\mathcal{Z}_a$ is a proper subset of $\mathcal{P}$. We design several important network agnostic building blocks with the $\mathcal{Q}^{(2,1)}$ condition, such as Byzantine broadcast, Byzantine agreement, information checking protocol, verifiable secret-sharing and secure multiplication protocol, whose complexity is polynomial in $n$ and $|\mathcal{Z}_s|$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信