一类具有非线性发病率的延迟分数阶SIRS流行病模型的稳定性分析

M. Naim, F. Lahmidi, A. Namir
{"title":"一类具有非线性发病率的延迟分数阶SIRS流行病模型的稳定性分析","authors":"M. Naim, F. Lahmidi, A. Namir","doi":"10.12732/ijam.v32i5.1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the stability of a fractional order SIRS epidemic model with nonlinear incidence rate and time delay, where the fractional derivative is defined in the Caputo sense. The delay is introduced into the model in order to modeled the incubation period. Using the stability analysis of delayed fractional order systems, we prove that the disease-free equilibrium is locally asymptotically stable when the basic reproduction number R0 < 1. Also, we show that if R0 > 1, the endemic equilibrium is locally asymptotically stable. AMS Subject Classification: 34A08, 37C75, 92D30","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"121 1","pages":"733"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"STABILITY ANALYSIS OF A DELAYED FRACTIONAL ORDER SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE\",\"authors\":\"M. Naim, F. Lahmidi, A. Namir\",\"doi\":\"10.12732/ijam.v32i5.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the stability of a fractional order SIRS epidemic model with nonlinear incidence rate and time delay, where the fractional derivative is defined in the Caputo sense. The delay is introduced into the model in order to modeled the incubation period. Using the stability analysis of delayed fractional order systems, we prove that the disease-free equilibrium is locally asymptotically stable when the basic reproduction number R0 < 1. Also, we show that if R0 > 1, the endemic equilibrium is locally asymptotically stable. AMS Subject Classification: 34A08, 37C75, 92D30\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"121 1\",\"pages\":\"733\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v32i5.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v32i5.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一类具有非线性发病率和时滞的分数阶SIRS流行病模型的稳定性,其中分数阶导数在Caputo意义上被定义。为了对潜伏期进行建模,在模型中引入了时滞。利用时滞分数阶系统的稳定性分析,证明了当基本繁殖数R0 < 1时无病平衡点是局部渐近稳定的。我们还证明了当R0 > 1时,地方性平衡是局部渐近稳定的。学科分类:34A08, 37C75, 92D30
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STABILITY ANALYSIS OF A DELAYED FRACTIONAL ORDER SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE
In this paper, we study the stability of a fractional order SIRS epidemic model with nonlinear incidence rate and time delay, where the fractional derivative is defined in the Caputo sense. The delay is introduced into the model in order to modeled the incubation period. Using the stability analysis of delayed fractional order systems, we prove that the disease-free equilibrium is locally asymptotically stable when the basic reproduction number R0 < 1. Also, we show that if R0 > 1, the endemic equilibrium is locally asymptotically stable. AMS Subject Classification: 34A08, 37C75, 92D30
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信