Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, M. Rao
{"title":"使用rank - cnn进行年龄估计","authors":"Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, M. Rao","doi":"10.1109/CVPR.2017.86","DOIUrl":null,"url":null,"abstract":"Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial image-based age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a series of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. We theoretically obtain a much tighter error bound for ranking-based age estimation. Moreover, we rigorously prove that ranking-CNN is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that statistically, ranking-CNN significantly outperforms other state-of-the-art age estimation models on benchmark datasets.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"9 1","pages":"742-751"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":"{\"title\":\"Using Ranking-CNN for Age Estimation\",\"authors\":\"Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, M. Rao\",\"doi\":\"10.1109/CVPR.2017.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial image-based age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a series of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. We theoretically obtain a much tighter error bound for ranking-based age estimation. Moreover, we rigorously prove that ranking-CNN is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that statistically, ranking-CNN significantly outperforms other state-of-the-art age estimation models on benchmark datasets.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"9 1\",\"pages\":\"742-751\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"228\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial image-based age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a series of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. We theoretically obtain a much tighter error bound for ranking-based age estimation. Moreover, we rigorously prove that ranking-CNN is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that statistically, ranking-CNN significantly outperforms other state-of-the-art age estimation models on benchmark datasets.