非线性分数阶Neumann椭圆方程正解的存在性

Haoqi Ni, Aliang Xia, Xiongjun Zheng
{"title":"非线性分数阶Neumann椭圆方程正解的存在性","authors":"Haoqi Ni, Aliang Xia, Xiongjun Zheng","doi":"10.7153/DEA-2018-10-07","DOIUrl":null,"url":null,"abstract":"This article is devoted to study the fractional Neumann elliptic problem ⎧⎪⎨ ⎪⎩ ε2s(−Δ)su+u = up in Ω, ∂νu = 0 on ∂Ω, u > 0 in Ω, where Ω is a smooth bounded domain of RN , N > 2s , 0 < s s0 < 1 , 1 < p < (N +2s)/(N− 2s) , ε > 0 and ν is the outer normal to ∂Ω . We show that there exists at least one nonconstant solution uε to this problem provided ε is small. Moreover, we prove that uε ∈ L∞(Ω) by using Moser-Nash iteration.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"26 1","pages":"115-129"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence of positive solutions for nonlinear fractional Neumann elliptic equations\",\"authors\":\"Haoqi Ni, Aliang Xia, Xiongjun Zheng\",\"doi\":\"10.7153/DEA-2018-10-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to study the fractional Neumann elliptic problem ⎧⎪⎨ ⎪⎩ ε2s(−Δ)su+u = up in Ω, ∂νu = 0 on ∂Ω, u > 0 in Ω, where Ω is a smooth bounded domain of RN , N > 2s , 0 < s s0 < 1 , 1 < p < (N +2s)/(N− 2s) , ε > 0 and ν is the outer normal to ∂Ω . We show that there exists at least one nonconstant solution uε to this problem provided ε is small. Moreover, we prove that uε ∈ L∞(Ω) by using Moser-Nash iteration.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"26 1\",\"pages\":\"115-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2018-10-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2018-10-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文致力于研究分数阶Neumann椭圆问题⎪⎪ ε2s(−Δ)在Ω中su+u = up,在∂Ω中∂νu = 0,在Ω中u > 0,其中Ω是RN的光滑有界域,N > 2s, 0 < s, 0 < p < (N +2s)/(N−2s), ε > 0, ν是∂Ω的外法线。我们证明了在ε很小的情况下,这个问题的ε至少存在一个非常数解。此外,我们利用Moser-Nash迭代证明了uε∈L∞(Ω)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solutions for nonlinear fractional Neumann elliptic equations
This article is devoted to study the fractional Neumann elliptic problem ⎧⎪⎨ ⎪⎩ ε2s(−Δ)su+u = up in Ω, ∂νu = 0 on ∂Ω, u > 0 in Ω, where Ω is a smooth bounded domain of RN , N > 2s , 0 < s s0 < 1 , 1 < p < (N +2s)/(N− 2s) , ε > 0 and ν is the outer normal to ∂Ω . We show that there exists at least one nonconstant solution uε to this problem provided ε is small. Moreover, we prove that uε ∈ L∞(Ω) by using Moser-Nash iteration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信