D. Diab, N. Smagin, F. Lefebvre, G. Nassar, S. Isber, F. Omar, A. Naja
{"title":"用于水下无线传感器网络的球形压电换能器宽带振动能量采集","authors":"D. Diab, N. Smagin, F. Lefebvre, G. Nassar, S. Isber, F. Omar, A. Naja","doi":"10.3813/AAA.919342","DOIUrl":null,"url":null,"abstract":"A new sensing node container based on a spherical piezoelectric transducer is proposed. This device provides broadband vibrational energy harvesting and sensing facilities intended for underwater wireless sensor networks. The transducer is composed of two acrylic glass (PMMA) half-spherical\n shells and a Pz26 piezoelectric ring clamped between the two shells. A simulation model of vibrational energy harvesting has been developed with electromechanical circuits for thickness and radial vibrational modes. This approach was validated by a finite element simulation. As a result, optimal\n power harvesting conditions and estimated harvested voltage were defined. A prototype of 2.2 cm in diameter was realized and characterized. Analysis in air environment reveals several structural resonance modes in the 20–80 kHz frequency range. The directivity patterns corresponding\n to these modes was obtained using laser Doppler vibrometry. The measurements for the underwater environment show that the structural resonance modes shift down in frequency to the 10–60 kHz range, and exhibiting low directivity dependence. Power harvesting performances was measured and\n quantified relative to acoustical pres- sure measurements using a hydrophone. The average conversion coefficient value was found to be in the order of 3 V/MPa. In broadband excitation mode, and for an acoustic pressure of 10 kPa, the amount of harvested power out of 5 main resonance modes\n is 3.3 μW.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Broadband Vibrational Energy Harvesting with a Spherical Piezoelectric Transducer Devoted to Underwater Wireless Sensor Networks\",\"authors\":\"D. Diab, N. Smagin, F. Lefebvre, G. Nassar, S. Isber, F. Omar, A. Naja\",\"doi\":\"10.3813/AAA.919342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new sensing node container based on a spherical piezoelectric transducer is proposed. This device provides broadband vibrational energy harvesting and sensing facilities intended for underwater wireless sensor networks. The transducer is composed of two acrylic glass (PMMA) half-spherical\\n shells and a Pz26 piezoelectric ring clamped between the two shells. A simulation model of vibrational energy harvesting has been developed with electromechanical circuits for thickness and radial vibrational modes. This approach was validated by a finite element simulation. As a result, optimal\\n power harvesting conditions and estimated harvested voltage were defined. A prototype of 2.2 cm in diameter was realized and characterized. Analysis in air environment reveals several structural resonance modes in the 20–80 kHz frequency range. The directivity patterns corresponding\\n to these modes was obtained using laser Doppler vibrometry. The measurements for the underwater environment show that the structural resonance modes shift down in frequency to the 10–60 kHz range, and exhibiting low directivity dependence. Power harvesting performances was measured and\\n quantified relative to acoustical pres- sure measurements using a hydrophone. The average conversion coefficient value was found to be in the order of 3 V/MPa. In broadband excitation mode, and for an acoustic pressure of 10 kPa, the amount of harvested power out of 5 main resonance modes\\n is 3.3 μW.\",\"PeriodicalId\":35085,\"journal\":{\"name\":\"Acta Acustica united with Acustica\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica united with Acustica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3813/AAA.919342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/AAA.919342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Broadband Vibrational Energy Harvesting with a Spherical Piezoelectric Transducer Devoted to Underwater Wireless Sensor Networks
A new sensing node container based on a spherical piezoelectric transducer is proposed. This device provides broadband vibrational energy harvesting and sensing facilities intended for underwater wireless sensor networks. The transducer is composed of two acrylic glass (PMMA) half-spherical
shells and a Pz26 piezoelectric ring clamped between the two shells. A simulation model of vibrational energy harvesting has been developed with electromechanical circuits for thickness and radial vibrational modes. This approach was validated by a finite element simulation. As a result, optimal
power harvesting conditions and estimated harvested voltage were defined. A prototype of 2.2 cm in diameter was realized and characterized. Analysis in air environment reveals several structural resonance modes in the 20–80 kHz frequency range. The directivity patterns corresponding
to these modes was obtained using laser Doppler vibrometry. The measurements for the underwater environment show that the structural resonance modes shift down in frequency to the 10–60 kHz range, and exhibiting low directivity dependence. Power harvesting performances was measured and
quantified relative to acoustical pres- sure measurements using a hydrophone. The average conversion coefficient value was found to be in the order of 3 V/MPa. In broadband excitation mode, and for an acoustic pressure of 10 kPa, the amount of harvested power out of 5 main resonance modes
is 3.3 μW.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.