唯一乘积群和同余子群

William Craig, P. Linnell
{"title":"唯一乘积群和同余子群","authors":"William Craig, P. Linnell","doi":"10.1142/S0219498822500256","DOIUrl":null,"url":null,"abstract":"We prove that a uniform pro-p group with no nonabelian free subgroups has a normal series with torsion-free abelian factors. We discuss this in relation to unique product groups. We also consider generalizations of Hantzsche-Wendt groups.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unique product groups and congruence subgroups\",\"authors\":\"William Craig, P. Linnell\",\"doi\":\"10.1142/S0219498822500256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a uniform pro-p group with no nonabelian free subgroups has a normal series with torsion-free abelian factors. We discuss this in relation to unique product groups. We also consider generalizations of Hantzsche-Wendt groups.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219498822500256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219498822500256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

证明了没有非阿贝尔自由子群的一致pro-p群具有具有无扭阿贝尔因子的正规级数。我们将根据独特的产品组来讨论这一点。我们还考虑了Hantzsche-Wendt群的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique product groups and congruence subgroups
We prove that a uniform pro-p group with no nonabelian free subgroups has a normal series with torsion-free abelian factors. We discuss this in relation to unique product groups. We also consider generalizations of Hantzsche-Wendt groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信