Yu-Chen Liu, Chen Chen, Kai-De Chen, Yong-Long Syu, Ching-Chia Chen, Kang Liu, Xingyu Chen, H. Chiu
{"title":"用于高频LLC谐振变换器的集成平面变压器的设计与实现","authors":"Yu-Chen Liu, Chen Chen, Kai-De Chen, Yong-Long Syu, Ching-Chia Chen, Kang Liu, Xingyu Chen, H. Chiu","doi":"10.1109/APEC42165.2021.9487046","DOIUrl":null,"url":null,"abstract":"In this study, an LLC resonant converter equipped with an adjustable leakage inductance integrated transformer is proposed and applied to high-power adapters. To achieve high efficiency and power density, the magnetic circuit was increased by substituting the resonant inductor with an adjustable leakage inductance integrated transformer, and a novel core structure was designed to reduce copper loss. To further reduce the core loss and copper loss of the transformer, the core size was analyzed using a parametric technique. Finally, the total loss and physical footprint of the transformer were compared to select the most effective design point as the final design. The FEA 3D simulation was employed to verify the function of the transformer. An integrated transformer with adjustable leakage inductance replaced the resonant inductor in LLC resonant converters. Finally, a resonant converter was achieved with a switching frequency operating at 1 MHz, input voltage of 380 V, output voltage of 19 V, output power of 190 W, power density of 400 W/in3, and maximum efficiency of 94.3%.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Implementation of an Integrated Planar Transformer for High-Frequency LLC Resonant Converters\",\"authors\":\"Yu-Chen Liu, Chen Chen, Kai-De Chen, Yong-Long Syu, Ching-Chia Chen, Kang Liu, Xingyu Chen, H. Chiu\",\"doi\":\"10.1109/APEC42165.2021.9487046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an LLC resonant converter equipped with an adjustable leakage inductance integrated transformer is proposed and applied to high-power adapters. To achieve high efficiency and power density, the magnetic circuit was increased by substituting the resonant inductor with an adjustable leakage inductance integrated transformer, and a novel core structure was designed to reduce copper loss. To further reduce the core loss and copper loss of the transformer, the core size was analyzed using a parametric technique. Finally, the total loss and physical footprint of the transformer were compared to select the most effective design point as the final design. The FEA 3D simulation was employed to verify the function of the transformer. An integrated transformer with adjustable leakage inductance replaced the resonant inductor in LLC resonant converters. Finally, a resonant converter was achieved with a switching frequency operating at 1 MHz, input voltage of 380 V, output voltage of 19 V, output power of 190 W, power density of 400 W/in3, and maximum efficiency of 94.3%.\",\"PeriodicalId\":7050,\"journal\":{\"name\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC42165.2021.9487046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Implementation of an Integrated Planar Transformer for High-Frequency LLC Resonant Converters
In this study, an LLC resonant converter equipped with an adjustable leakage inductance integrated transformer is proposed and applied to high-power adapters. To achieve high efficiency and power density, the magnetic circuit was increased by substituting the resonant inductor with an adjustable leakage inductance integrated transformer, and a novel core structure was designed to reduce copper loss. To further reduce the core loss and copper loss of the transformer, the core size was analyzed using a parametric technique. Finally, the total loss and physical footprint of the transformer were compared to select the most effective design point as the final design. The FEA 3D simulation was employed to verify the function of the transformer. An integrated transformer with adjustable leakage inductance replaced the resonant inductor in LLC resonant converters. Finally, a resonant converter was achieved with a switching frequency operating at 1 MHz, input voltage of 380 V, output voltage of 19 V, output power of 190 W, power density of 400 W/in3, and maximum efficiency of 94.3%.