{"title":"面向现代应用的一种新型、灵活的正交阵列设计结构","authors":"Yuanzhen He, C. D. Lin, Fasheng Sun","doi":"10.1214/21-aos2159","DOIUrl":null,"url":null,"abstract":"Orthogonal array, a classical and effective tool for collecting data, has been flourished with its applications in modern computer experiments and engineering statistics. Driven by the wide use of computer experiments with both qualitative and quantitative factors, multiple computer experiments, multi-fidelity computer experiments, cross-validation and stochastic optimization, orthogonal arrays with certain structures have been introduced. Sliced orthogonal arrays and nested orthogonal arrays are examples of such arrays. This article introduces a flexible, fresh construction method which uses smaller arrays and a special structure. The method uncovers the hidden structure of many existing fixed-level orthogonal arrays of given run sizes, possibly with more columns. It also allows fixed-level orthogonal arrays of nearly strength three to be constructed, which are useful as there are not many construction methods for fixed-level orthogonal arrays of strength three, and also helpful for generating Latin hypercube designs with desirable low-dimensional projections. Theoretical properties of the proposed method are explored. As by-products, several theoretical results on orthogonal arrays are obtained.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new and flexible design construction for orthogonal arrays for modern applications\",\"authors\":\"Yuanzhen He, C. D. Lin, Fasheng Sun\",\"doi\":\"10.1214/21-aos2159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal array, a classical and effective tool for collecting data, has been flourished with its applications in modern computer experiments and engineering statistics. Driven by the wide use of computer experiments with both qualitative and quantitative factors, multiple computer experiments, multi-fidelity computer experiments, cross-validation and stochastic optimization, orthogonal arrays with certain structures have been introduced. Sliced orthogonal arrays and nested orthogonal arrays are examples of such arrays. This article introduces a flexible, fresh construction method which uses smaller arrays and a special structure. The method uncovers the hidden structure of many existing fixed-level orthogonal arrays of given run sizes, possibly with more columns. It also allows fixed-level orthogonal arrays of nearly strength three to be constructed, which are useful as there are not many construction methods for fixed-level orthogonal arrays of strength three, and also helpful for generating Latin hypercube designs with desirable low-dimensional projections. Theoretical properties of the proposed method are explored. As by-products, several theoretical results on orthogonal arrays are obtained.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new and flexible design construction for orthogonal arrays for modern applications
Orthogonal array, a classical and effective tool for collecting data, has been flourished with its applications in modern computer experiments and engineering statistics. Driven by the wide use of computer experiments with both qualitative and quantitative factors, multiple computer experiments, multi-fidelity computer experiments, cross-validation and stochastic optimization, orthogonal arrays with certain structures have been introduced. Sliced orthogonal arrays and nested orthogonal arrays are examples of such arrays. This article introduces a flexible, fresh construction method which uses smaller arrays and a special structure. The method uncovers the hidden structure of many existing fixed-level orthogonal arrays of given run sizes, possibly with more columns. It also allows fixed-level orthogonal arrays of nearly strength three to be constructed, which are useful as there are not many construction methods for fixed-level orthogonal arrays of strength three, and also helpful for generating Latin hypercube designs with desirable low-dimensional projections. Theoretical properties of the proposed method are explored. As by-products, several theoretical results on orthogonal arrays are obtained.