谁去那儿?:绘制面部外貌多样性的方法

Zachary Bessinger, C. Stauffer, Nathan Jacobs
{"title":"谁去那儿?:绘制面部外貌多样性的方法","authors":"Zachary Bessinger, C. Stauffer, Nathan Jacobs","doi":"10.1145/2996913.2996997","DOIUrl":null,"url":null,"abstract":"Geotagged imagery, from satellite, aerial, and ground-level cameras, provides a rich record of how the appearance of scenes and objects differ across the globe. Modern web- based mapping software makes it easy to see how different places around the world look, both from satellite and ground-level views. Unfortunately, interfaces for exploring how the appearance of objects depend on geographic location are quite limited. In this work, we focus on a particularly common object, the human face, and propose learning generative models that relate facial appearance and geographic location. We train these models using a novel dataset of geotagged face imagery we constructed for this task. We present qualitative and quantitative results that demonstrate that these models capture meaningful trends in appearance. We also describe a framework for constructing a web-based visualization that captures the geospatial distribution of human facial appearance.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Who goes there?: approaches to mapping facial appearance diversity\",\"authors\":\"Zachary Bessinger, C. Stauffer, Nathan Jacobs\",\"doi\":\"10.1145/2996913.2996997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geotagged imagery, from satellite, aerial, and ground-level cameras, provides a rich record of how the appearance of scenes and objects differ across the globe. Modern web- based mapping software makes it easy to see how different places around the world look, both from satellite and ground-level views. Unfortunately, interfaces for exploring how the appearance of objects depend on geographic location are quite limited. In this work, we focus on a particularly common object, the human face, and propose learning generative models that relate facial appearance and geographic location. We train these models using a novel dataset of geotagged face imagery we constructed for this task. We present qualitative and quantitative results that demonstrate that these models capture meaningful trends in appearance. We also describe a framework for constructing a web-based visualization that captures the geospatial distribution of human facial appearance.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

来自卫星、空中和地面摄像机的地理标记图像提供了丰富的记录,说明全球各地的场景和物体的外观如何不同。现代基于网络的地图软件可以很容易地从卫星和地面上看到世界各地不同的地方。不幸的是,用于探索对象的外观如何依赖于地理位置的接口非常有限。在这项工作中,我们专注于一个特别常见的对象,人脸,并提出了将面部外观和地理位置联系起来的学习生成模型。我们使用我们为此任务构建的地理标记面部图像的新数据集来训练这些模型。我们提出的定性和定量结果表明,这些模型捕捉有意义的趋势在外观。我们还描述了一个框架,用于构建基于web的可视化,以捕获人类面部外观的地理空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Who goes there?: approaches to mapping facial appearance diversity
Geotagged imagery, from satellite, aerial, and ground-level cameras, provides a rich record of how the appearance of scenes and objects differ across the globe. Modern web- based mapping software makes it easy to see how different places around the world look, both from satellite and ground-level views. Unfortunately, interfaces for exploring how the appearance of objects depend on geographic location are quite limited. In this work, we focus on a particularly common object, the human face, and propose learning generative models that relate facial appearance and geographic location. We train these models using a novel dataset of geotagged face imagery we constructed for this task. We present qualitative and quantitative results that demonstrate that these models capture meaningful trends in appearance. We also describe a framework for constructing a web-based visualization that captures the geospatial distribution of human facial appearance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信