Z. Hassani, Mohsen Alambardar Meybodi, Vahid Hajihashemi
{"title":"基于学习算法的特征选择信用风险评估","authors":"Z. Hassani, Mohsen Alambardar Meybodi, Vahid Hajihashemi","doi":"10.1080/16168658.2021.1925021","DOIUrl":null,"url":null,"abstract":"Firefly algorithm is one of the latest outstanding bio-inspired algorithms, which could be manipulated in solving continuous or discrete optimisation problems. In this context, we have utilised the firefly algorithm accompanied by five well-known models of feature selection classifiers to have an accurate estimation of risk, and further to improve the interpret-ability of credit card prediction. One of the significant challenges in the real-world datasets is how to select features. As most of the datasets are unbalanced, the selection of features turns to the maximum class of data that is not fair. To overcome this issue, we have balanced the data using the SMOTE method. Our experimental results on four datasets show that balancing data has increased accuracy. In addition, using a hybrid firefly algorithm, the optimal combination of features that predicts the target class label is achieved. The selected features by the proposed method besides been reduced can represent both majority and minority classes.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"9 1","pages":"529 - 544"},"PeriodicalIF":1.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Credit Risk Assessment Using Learning Algorithms for Feature Selection\",\"authors\":\"Z. Hassani, Mohsen Alambardar Meybodi, Vahid Hajihashemi\",\"doi\":\"10.1080/16168658.2021.1925021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firefly algorithm is one of the latest outstanding bio-inspired algorithms, which could be manipulated in solving continuous or discrete optimisation problems. In this context, we have utilised the firefly algorithm accompanied by five well-known models of feature selection classifiers to have an accurate estimation of risk, and further to improve the interpret-ability of credit card prediction. One of the significant challenges in the real-world datasets is how to select features. As most of the datasets are unbalanced, the selection of features turns to the maximum class of data that is not fair. To overcome this issue, we have balanced the data using the SMOTE method. Our experimental results on four datasets show that balancing data has increased accuracy. In addition, using a hybrid firefly algorithm, the optimal combination of features that predicts the target class label is achieved. The selected features by the proposed method besides been reduced can represent both majority and minority classes.\",\"PeriodicalId\":37623,\"journal\":{\"name\":\"Fuzzy Information and Engineering\",\"volume\":\"9 1\",\"pages\":\"529 - 544\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Information and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16168658.2021.1925021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.1925021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Credit Risk Assessment Using Learning Algorithms for Feature Selection
Firefly algorithm is one of the latest outstanding bio-inspired algorithms, which could be manipulated in solving continuous or discrete optimisation problems. In this context, we have utilised the firefly algorithm accompanied by five well-known models of feature selection classifiers to have an accurate estimation of risk, and further to improve the interpret-ability of credit card prediction. One of the significant challenges in the real-world datasets is how to select features. As most of the datasets are unbalanced, the selection of features turns to the maximum class of data that is not fair. To overcome this issue, we have balanced the data using the SMOTE method. Our experimental results on four datasets show that balancing data has increased accuracy. In addition, using a hybrid firefly algorithm, the optimal combination of features that predicts the target class label is achieved. The selected features by the proposed method besides been reduced can represent both majority and minority classes.
期刊介绍:
Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]