轨道顶点算子代数Lsl2^(k,0)的表示和融合规则

IF 0.4 4区 数学 Q4 MATHEMATICS
Bing Wang
{"title":"轨道顶点算子代数Lsl2^(k,0)的表示和融合规则","authors":"Bing Wang","doi":"10.1142/s1005386722000207","DOIUrl":null,"url":null,"abstract":"For the cyclic group [Formula: see text] and a positive integer [Formula: see text], we study the representations of the orbifold vertex operator algebra [Formula: see text]. All the irreducible modules for [Formula: see text] are classified and constructed explicitly. Quantum dimensions and fusion rules for [Formula: see text] are completely determined.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Representations and Fusion Rules for the Orbifold Vertex Operator Algebras Lsl2^(k,0)ℤ3\",\"authors\":\"Bing Wang\",\"doi\":\"10.1142/s1005386722000207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the cyclic group [Formula: see text] and a positive integer [Formula: see text], we study the representations of the orbifold vertex operator algebra [Formula: see text]. All the irreducible modules for [Formula: see text] are classified and constructed explicitly. Quantum dimensions and fusion rules for [Formula: see text] are completely determined.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000207\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000207","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于循环群[公式:见文]和正整数[公式:见文],我们研究了轨道顶点算子代数[公式:见文]的表示。[公式:见文本]的所有不可约模块都被明确地分类和构造。[公式:见原文]的量子维度和融合规则是完全确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations and Fusion Rules for the Orbifold Vertex Operator Algebras Lsl2^(k,0)ℤ3
For the cyclic group [Formula: see text] and a positive integer [Formula: see text], we study the representations of the orbifold vertex operator algebra [Formula: see text]. All the irreducible modules for [Formula: see text] are classified and constructed explicitly. Quantum dimensions and fusion rules for [Formula: see text] are completely determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信