有界推力轨迹规划的两种方法

Branislav Konjevic, M. Puncec, Z. Kovačić
{"title":"有界推力轨迹规划的两种方法","authors":"Branislav Konjevic, M. Puncec, Z. Kovačić","doi":"10.1109/AMC.2012.6197130","DOIUrl":null,"url":null,"abstract":"This paper presents two different approaches to trajectory planning that provide boundedness of position, velocity, acceleration and jerk. To achieve that goal on all segments of the planned trajectory, the first approach combines fifth-order and fourth-order polynomials, while the second one separates a velocity profile from a given path. Using a minimal path traversal time criterion for both approaches, the methods were tested and verified on a selected trajectory for a three degrees of freedom (DOF) planar articulated robot.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"34 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two approaches to bounded jerk trajectory planning\",\"authors\":\"Branislav Konjevic, M. Puncec, Z. Kovačić\",\"doi\":\"10.1109/AMC.2012.6197130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two different approaches to trajectory planning that provide boundedness of position, velocity, acceleration and jerk. To achieve that goal on all segments of the planned trajectory, the first approach combines fifth-order and fourth-order polynomials, while the second one separates a velocity profile from a given path. Using a minimal path traversal time criterion for both approaches, the methods were tested and verified on a selected trajectory for a three degrees of freedom (DOF) planar articulated robot.\",\"PeriodicalId\":6439,\"journal\":{\"name\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"34 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2012.6197130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了两种不同的轨迹规划方法,提供了位置、速度、加速度和加速度的有界性。为了在计划轨迹的所有部分上实现这一目标,第一种方法结合了五阶和四阶多项式,而第二种方法将速度剖面从给定路径中分离出来。采用最小路径遍历时间准则,在三自由度平面关节机器人的选定轨迹上对两种方法进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two approaches to bounded jerk trajectory planning
This paper presents two different approaches to trajectory planning that provide boundedness of position, velocity, acceleration and jerk. To achieve that goal on all segments of the planned trajectory, the first approach combines fifth-order and fourth-order polynomials, while the second one separates a velocity profile from a given path. Using a minimal path traversal time criterion for both approaches, the methods were tested and verified on a selected trajectory for a three degrees of freedom (DOF) planar articulated robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信