关于s -2吸收子模和n-正则模

Pub Date : 2020-07-01 DOI:10.2478/auom-2020-0030
G. Ulucak, Ünsal Tekir, Suat Koç
{"title":"关于s -2吸收子模和n-正则模","authors":"G. Ulucak, Ünsal Tekir, Suat Koç","doi":"10.2478/auom-2020-0030","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring and M an R-module. In this article, we introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R is a multiplicatively closed subset of R. A submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M, then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples, characterizations and properties of S-2-absorbing submodules are given. Moreover, we use them to characterize von Neumann regular modules in the sense [9].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On S-2-absorbing submodules and vn-regular modules\",\"authors\":\"G. Ulucak, Ünsal Tekir, Suat Koç\",\"doi\":\"10.2478/auom-2020-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a commutative ring and M an R-module. In this article, we introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R is a multiplicatively closed subset of R. A submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M, then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples, characterizations and properties of S-2-absorbing submodules are given. Moreover, we use them to characterize von Neumann regular modules in the sense [9].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

设R是一个交换环,M是一个R模。在本文中,我们引入了s -2吸收子模块的概念。假设S⊆R是一个积闭子集的子模块P R M (P: R M)∩S =∅据说是一个S-2-absorbing子模块如果存在一个元素∈年代,每当反弹道导弹∈P, b∈R M∈M,然后sab∈(P: R M)或山姆∈P或者座∈P .许多例子,特征和属性的S-2-absorbing子。此外,我们使用它们在某种意义上表征von Neumann正则模[9]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On S-2-absorbing submodules and vn-regular modules
Abstract Let R be a commutative ring and M an R-module. In this article, we introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R is a multiplicatively closed subset of R. A submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M, then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples, characterizations and properties of S-2-absorbing submodules are given. Moreover, we use them to characterize von Neumann regular modules in the sense [9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信