{"title":"关于s -2吸收子模和n-正则模","authors":"G. Ulucak, Ünsal Tekir, Suat Koç","doi":"10.2478/auom-2020-0030","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring and M an R-module. In this article, we introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R is a multiplicatively closed subset of R. A submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M, then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples, characterizations and properties of S-2-absorbing submodules are given. Moreover, we use them to characterize von Neumann regular modules in the sense [9].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On S-2-absorbing submodules and vn-regular modules\",\"authors\":\"G. Ulucak, Ünsal Tekir, Suat Koç\",\"doi\":\"10.2478/auom-2020-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a commutative ring and M an R-module. In this article, we introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R is a multiplicatively closed subset of R. A submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M, then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples, characterizations and properties of S-2-absorbing submodules are given. Moreover, we use them to characterize von Neumann regular modules in the sense [9].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
摘要
设R是一个交换环,M是一个R模。在本文中,我们引入了s -2吸收子模块的概念。假设S⊆R是一个积闭子集的子模块P R M (P: R M)∩S =∅据说是一个S-2-absorbing子模块如果存在一个元素∈年代,每当反弹道导弹∈P, b∈R M∈M,然后sab∈(P: R M)或山姆∈P或者座∈P .许多例子,特征和属性的S-2-absorbing子。此外,我们使用它们在某种意义上表征von Neumann正则模[9]。
On S-2-absorbing submodules and vn-regular modules
Abstract Let R be a commutative ring and M an R-module. In this article, we introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R is a multiplicatively closed subset of R. A submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M, then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples, characterizations and properties of S-2-absorbing submodules are given. Moreover, we use them to characterize von Neumann regular modules in the sense [9].