C. Lu, Yi-Chuan Lin, Kerwin Wang, M. Dai, C. K. Liu, L. Liao, H. Chien, Y. S. Chen
{"title":"热电发电机互连用银镍纳米复合材料电容器放电烧结","authors":"C. Lu, Yi-Chuan Lin, Kerwin Wang, M. Dai, C. K. Liu, L. Liao, H. Chien, Y. S. Chen","doi":"10.1109/NEMS.2014.6908829","DOIUrl":null,"url":null,"abstract":"This paper presents a capacitor discharge sintering process with a homemade silver-nickel paste for thermoelectric element interconnections. The paste is a 75 nm silver/nickel composite mixture. Without using any specific atmosphere control, the capacitor discharge is capable of nanoparticle sintering with time-efficient process at room temperature. A 0.01 F capacitor is serially connected to the sample and charged to 10 V (0.5 Joule) for the sintering process. To evaluate the conductivity of the sintered composite, the conductive material is screen-printed on an Al2O3 ceramic substrate; it forms a rectangular tunnel to bridge two silver electrodes. After sintering process, the resistance of the screened conductive pass-way is dropped from 9.47 Ω to 0.35 Ω. The bonding strength and high temperature resistance test results of the sintered composite is also presented in this paper. Without generating a lot of heat, the sintering process can be applicable to flexible electronics.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"53 1","pages":"370-373"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Capacitor discharge sintering with silver-nickel nano-composite in the interconnection of thermoelectric generators\",\"authors\":\"C. Lu, Yi-Chuan Lin, Kerwin Wang, M. Dai, C. K. Liu, L. Liao, H. Chien, Y. S. Chen\",\"doi\":\"10.1109/NEMS.2014.6908829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a capacitor discharge sintering process with a homemade silver-nickel paste for thermoelectric element interconnections. The paste is a 75 nm silver/nickel composite mixture. Without using any specific atmosphere control, the capacitor discharge is capable of nanoparticle sintering with time-efficient process at room temperature. A 0.01 F capacitor is serially connected to the sample and charged to 10 V (0.5 Joule) for the sintering process. To evaluate the conductivity of the sintered composite, the conductive material is screen-printed on an Al2O3 ceramic substrate; it forms a rectangular tunnel to bridge two silver electrodes. After sintering process, the resistance of the screened conductive pass-way is dropped from 9.47 Ω to 0.35 Ω. The bonding strength and high temperature resistance test results of the sintered composite is also presented in this paper. Without generating a lot of heat, the sintering process can be applicable to flexible electronics.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"53 1\",\"pages\":\"370-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capacitor discharge sintering with silver-nickel nano-composite in the interconnection of thermoelectric generators
This paper presents a capacitor discharge sintering process with a homemade silver-nickel paste for thermoelectric element interconnections. The paste is a 75 nm silver/nickel composite mixture. Without using any specific atmosphere control, the capacitor discharge is capable of nanoparticle sintering with time-efficient process at room temperature. A 0.01 F capacitor is serially connected to the sample and charged to 10 V (0.5 Joule) for the sintering process. To evaluate the conductivity of the sintered composite, the conductive material is screen-printed on an Al2O3 ceramic substrate; it forms a rectangular tunnel to bridge two silver electrodes. After sintering process, the resistance of the screened conductive pass-way is dropped from 9.47 Ω to 0.35 Ω. The bonding strength and high temperature resistance test results of the sintered composite is also presented in this paper. Without generating a lot of heat, the sintering process can be applicable to flexible electronics.