{"title":"求解并行机器调度问题的多目标优化方法","authors":"Xiaohui Li, L. Amodeo, F. Yalaoui, H. Chehade","doi":"10.1155/2010/943050","DOIUrl":null,"url":null,"abstract":"A multiobjective optimization problem which focuses on parallel machines scheduling is considered. This problem consists of scheduling n independent jobs on m identical parallelmachines with release dates, due dates, and sequence-dependent setup times. The preemption of jobs is forbidden. The aim is to minimize two different objectives: makespan and total tardiness. The contribution of this paper is to propose first a new mathematical model for this specific problem. Then, since this problem is NP hard in the strong sense, two well-known approximated methods, NSGA-II and SPEA-II, are adopted to solve it. Experimental results show the advantages of NSGA-II for the studied problem. An exact method is then applied to be compared with NSGA-II algorithm in order to prove the efficiency of the former. Experimental results show the advantages of NSGA-II for the studied problem. Computational experiments show that on all the tested instances, our NSGA-II algorithm was able to get the optimal solutions.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"19 1","pages":"943050:1-943050:10"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Multiobjective Optimization Approach to Solve a Parallel Machines Scheduling Problem\",\"authors\":\"Xiaohui Li, L. Amodeo, F. Yalaoui, H. Chehade\",\"doi\":\"10.1155/2010/943050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiobjective optimization problem which focuses on parallel machines scheduling is considered. This problem consists of scheduling n independent jobs on m identical parallelmachines with release dates, due dates, and sequence-dependent setup times. The preemption of jobs is forbidden. The aim is to minimize two different objectives: makespan and total tardiness. The contribution of this paper is to propose first a new mathematical model for this specific problem. Then, since this problem is NP hard in the strong sense, two well-known approximated methods, NSGA-II and SPEA-II, are adopted to solve it. Experimental results show the advantages of NSGA-II for the studied problem. An exact method is then applied to be compared with NSGA-II algorithm in order to prove the efficiency of the former. Experimental results show the advantages of NSGA-II for the studied problem. Computational experiments show that on all the tested instances, our NSGA-II algorithm was able to get the optimal solutions.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":\"19 1\",\"pages\":\"943050:1-943050:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/943050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/943050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multiobjective Optimization Approach to Solve a Parallel Machines Scheduling Problem
A multiobjective optimization problem which focuses on parallel machines scheduling is considered. This problem consists of scheduling n independent jobs on m identical parallelmachines with release dates, due dates, and sequence-dependent setup times. The preemption of jobs is forbidden. The aim is to minimize two different objectives: makespan and total tardiness. The contribution of this paper is to propose first a new mathematical model for this specific problem. Then, since this problem is NP hard in the strong sense, two well-known approximated methods, NSGA-II and SPEA-II, are adopted to solve it. Experimental results show the advantages of NSGA-II for the studied problem. An exact method is then applied to be compared with NSGA-II algorithm in order to prove the efficiency of the former. Experimental results show the advantages of NSGA-II for the studied problem. Computational experiments show that on all the tested instances, our NSGA-II algorithm was able to get the optimal solutions.