{"title":"纳米尺度生物传感器设计中介电调制无结晶体管灵敏度的提高","authors":"Shradhya Singh, S. Bala, B. Raj, B. Raj","doi":"10.1166/sl.2020.4224","DOIUrl":null,"url":null,"abstract":"This work has proposed a device i.e., Dielectric Modulated (DM) Junctionless Transistor which is utilizes as Label-Free (LF) electrical characteristic detection of bio-molecules. The electrical characteristics used for the detection of biomolecules are electric field, surface potential,\n drain current and threshold voltage (Vth). Due to immobilization of biomolecules in the cavity region, the threshold voltage change in comparison to the absence of biomolecule, which is utilizes as the sensitivity metric. The sensitivity of biomolecule detection can be enhanced\n by using asymmetric gate operation of the device. In asymmetric mode the degree of sensitivity is almost five times higher than that of the symmetric mode of operation.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"50 1","pages":"328-333"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improved Sensitivity of Dielectric Modulated Junctionless Transistor for Nanoscale Biosensor Design\",\"authors\":\"Shradhya Singh, S. Bala, B. Raj, B. Raj\",\"doi\":\"10.1166/sl.2020.4224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work has proposed a device i.e., Dielectric Modulated (DM) Junctionless Transistor which is utilizes as Label-Free (LF) electrical characteristic detection of bio-molecules. The electrical characteristics used for the detection of biomolecules are electric field, surface potential,\\n drain current and threshold voltage (Vth). Due to immobilization of biomolecules in the cavity region, the threshold voltage change in comparison to the absence of biomolecule, which is utilizes as the sensitivity metric. The sensitivity of biomolecule detection can be enhanced\\n by using asymmetric gate operation of the device. In asymmetric mode the degree of sensitivity is almost five times higher than that of the symmetric mode of operation.\",\"PeriodicalId\":21781,\"journal\":{\"name\":\"Sensor Letters\",\"volume\":\"50 1\",\"pages\":\"328-333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/sl.2020.4224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Sensitivity of Dielectric Modulated Junctionless Transistor for Nanoscale Biosensor Design
This work has proposed a device i.e., Dielectric Modulated (DM) Junctionless Transistor which is utilizes as Label-Free (LF) electrical characteristic detection of bio-molecules. The electrical characteristics used for the detection of biomolecules are electric field, surface potential,
drain current and threshold voltage (Vth). Due to immobilization of biomolecules in the cavity region, the threshold voltage change in comparison to the absence of biomolecule, which is utilizes as the sensitivity metric. The sensitivity of biomolecule detection can be enhanced
by using asymmetric gate operation of the device. In asymmetric mode the degree of sensitivity is almost five times higher than that of the symmetric mode of operation.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.