代数变种的瓶颈度

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
S. Rocco, David Eklund, Madeleine Weinstein
{"title":"代数变种的瓶颈度","authors":"S. Rocco, David Eklund, Madeleine Weinstein","doi":"10.1137/19m1265776","DOIUrl":null,"url":null,"abstract":"A bottleneck of a smooth algebraic variety $X \\subset \\mathbb{C}^n$ is a pair of distinct points $(x,y) \\in X$ such that the Euclidean normal spaces at $x$ and $y$ contain the line spanned by $x$ and $y$. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"The Bottleneck Degree of Algebraic Varieties\",\"authors\":\"S. Rocco, David Eklund, Madeleine Weinstein\",\"doi\":\"10.1137/19m1265776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bottleneck of a smooth algebraic variety $X \\\\subset \\\\mathbb{C}^n$ is a pair of distinct points $(x,y) \\\\in X$ such that the Euclidean normal spaces at $x$ and $y$ contain the line spanned by $x$ and $y$. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19m1265776\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19m1265776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20

摘要

平滑代数变量$X \子集$ mathbb{C}^n$的瓶颈是X$中的一对不同的点$(X,y) \,使得$X $和$y$处的欧几里德正规空间包含由$X $和$y$张成的直线。瓶颈的窄性是数据代数几何中一个基本的复杂性度量。本文研究了仿射和射影变量的瓶颈数,我们称之为瓶颈度。瓶颈度是计算一个代数变量的所有瓶颈的复杂性的度量,例如使用数值同伦方法。我们证明瓶颈度是经典不变量如Chern类和极坐标类的函数。给出了低维的显式公式,并给出了一般情况下的计算算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bottleneck Degree of Algebraic Varieties
A bottleneck of a smooth algebraic variety $X \subset \mathbb{C}^n$ is a pair of distinct points $(x,y) \in X$ such that the Euclidean normal spaces at $x$ and $y$ contain the line spanned by $x$ and $y$. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信