Tanawat Chaonafai, Natthakorn Ruengkitrattanakul, Saranya Penpho, R. Nitisoravut, Pornthip Wimonsong
{"title":"大麻茎活性炭用于发酵增氢","authors":"Tanawat Chaonafai, Natthakorn Ruengkitrattanakul, Saranya Penpho, R. Nitisoravut, Pornthip Wimonsong","doi":"10.23919/ICUE-GESD.2018.8635709","DOIUrl":null,"url":null,"abstract":"Hemp stem was used as a raw material to make available activated carbon as it contains high carbon and adsorption capacity. It was synthesized by a chemical activation using H3PO4. The effect of activation temperature within a range of 350-500°C was explored. The obtained hemp stem activated carbons (H-ACs) were used for biohydrogen enhancement. Treated activated carbon (TAC) from the National Nanotechnology Center, Thailand was used for a comparative study. The results showed that H-AC with activation temperature of 500°C obtained the maximum hydrogen yield of 2.64 ± 1.16 mol of H2/mol of sucrose. Determination of specific surface area based on the Brunauer-Emmet-Teller (BET) theory, showed that H-AC (500°C) possessed the highest mesopore volume of 0.3650 cm3/g with specific surface area of 1,219.24 m2/g. A greater porosity of H-AC (500°C) as compared to TAC and other H-ACs led to a greater adsorption ability, particularly for volatile fatty acids, thus enhanced fermentative hydrogen production.","PeriodicalId":6584,"journal":{"name":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","volume":"61 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemp Stem Activated Carbon for Fermentative Hydrogen Enhancement\",\"authors\":\"Tanawat Chaonafai, Natthakorn Ruengkitrattanakul, Saranya Penpho, R. Nitisoravut, Pornthip Wimonsong\",\"doi\":\"10.23919/ICUE-GESD.2018.8635709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hemp stem was used as a raw material to make available activated carbon as it contains high carbon and adsorption capacity. It was synthesized by a chemical activation using H3PO4. The effect of activation temperature within a range of 350-500°C was explored. The obtained hemp stem activated carbons (H-ACs) were used for biohydrogen enhancement. Treated activated carbon (TAC) from the National Nanotechnology Center, Thailand was used for a comparative study. The results showed that H-AC with activation temperature of 500°C obtained the maximum hydrogen yield of 2.64 ± 1.16 mol of H2/mol of sucrose. Determination of specific surface area based on the Brunauer-Emmet-Teller (BET) theory, showed that H-AC (500°C) possessed the highest mesopore volume of 0.3650 cm3/g with specific surface area of 1,219.24 m2/g. A greater porosity of H-AC (500°C) as compared to TAC and other H-ACs led to a greater adsorption ability, particularly for volatile fatty acids, thus enhanced fermentative hydrogen production.\",\"PeriodicalId\":6584,\"journal\":{\"name\":\"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)\",\"volume\":\"61 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICUE-GESD.2018.8635709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICUE-GESD.2018.8635709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hemp Stem Activated Carbon for Fermentative Hydrogen Enhancement
Hemp stem was used as a raw material to make available activated carbon as it contains high carbon and adsorption capacity. It was synthesized by a chemical activation using H3PO4. The effect of activation temperature within a range of 350-500°C was explored. The obtained hemp stem activated carbons (H-ACs) were used for biohydrogen enhancement. Treated activated carbon (TAC) from the National Nanotechnology Center, Thailand was used for a comparative study. The results showed that H-AC with activation temperature of 500°C obtained the maximum hydrogen yield of 2.64 ± 1.16 mol of H2/mol of sucrose. Determination of specific surface area based on the Brunauer-Emmet-Teller (BET) theory, showed that H-AC (500°C) possessed the highest mesopore volume of 0.3650 cm3/g with specific surface area of 1,219.24 m2/g. A greater porosity of H-AC (500°C) as compared to TAC and other H-ACs led to a greater adsorption ability, particularly for volatile fatty acids, thus enhanced fermentative hydrogen production.