Neha Katoch, R. Thakur, Ashok Kumar, P. Ahluwalia, J. Kumar
{"title":"用外电场调谐硼罗芬/二硫化钼异质结构中的肖特基势垒","authors":"Neha Katoch, R. Thakur, Ashok Kumar, P. Ahluwalia, J. Kumar","doi":"10.1063/1.5113201","DOIUrl":null,"url":null,"abstract":"A first principle study of structural properties, band bending and tuning of schottky barrier height (SBH) of borophene/MoS2 Van der Waals heterostructure has been carried out within the framework of density functional theory (DFT). Studied binding energy shows that the interaction between borophene and MoS2 is weak. Consequently, both borophene and MoS2 are preserving their electronic nature in heterostructure. We have calculated the band bending 0.15 eV for borophene and -0.52 eV for MoS2 in borophene/MoS2 heterostructure which shows that the metal-semiconductor contact is in between p-type borophene and n-type MoS2. On the application of external electric field, tuning of schottky barriers has been achieved and metal-semiconductor contact gets transformed into ohmic contact which is important for the fast performance of electronic devices.A first principle study of structural properties, band bending and tuning of schottky barrier height (SBH) of borophene/MoS2 Van der Waals heterostructure has been carried out within the framework of density functional theory (DFT). Studied binding energy shows that the interaction between borophene and MoS2 is weak. Consequently, both borophene and MoS2 are preserving their electronic nature in heterostructure. We have calculated the band bending 0.15 eV for borophene and -0.52 eV for MoS2 in borophene/MoS2 heterostructure which shows that the metal-semiconductor contact is in between p-type borophene and n-type MoS2. On the application of external electric field, tuning of schottky barriers has been achieved and metal-semiconductor contact gets transformed into ohmic contact which is important for the fast performance of electronic devices.","PeriodicalId":10874,"journal":{"name":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","volume":"285 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning of Schottky barriers in borophene/MoS2 van der Waals heterostructure by external electric field\",\"authors\":\"Neha Katoch, R. Thakur, Ashok Kumar, P. Ahluwalia, J. Kumar\",\"doi\":\"10.1063/1.5113201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A first principle study of structural properties, band bending and tuning of schottky barrier height (SBH) of borophene/MoS2 Van der Waals heterostructure has been carried out within the framework of density functional theory (DFT). Studied binding energy shows that the interaction between borophene and MoS2 is weak. Consequently, both borophene and MoS2 are preserving their electronic nature in heterostructure. We have calculated the band bending 0.15 eV for borophene and -0.52 eV for MoS2 in borophene/MoS2 heterostructure which shows that the metal-semiconductor contact is in between p-type borophene and n-type MoS2. On the application of external electric field, tuning of schottky barriers has been achieved and metal-semiconductor contact gets transformed into ohmic contact which is important for the fast performance of electronic devices.A first principle study of structural properties, band bending and tuning of schottky barrier height (SBH) of borophene/MoS2 Van der Waals heterostructure has been carried out within the framework of density functional theory (DFT). Studied binding energy shows that the interaction between borophene and MoS2 is weak. Consequently, both borophene and MoS2 are preserving their electronic nature in heterostructure. We have calculated the band bending 0.15 eV for borophene and -0.52 eV for MoS2 in borophene/MoS2 heterostructure which shows that the metal-semiconductor contact is in between p-type borophene and n-type MoS2. On the application of external electric field, tuning of schottky barriers has been achieved and metal-semiconductor contact gets transformed into ohmic contact which is important for the fast performance of electronic devices.\",\"PeriodicalId\":10874,\"journal\":{\"name\":\"DAE SOLID STATE PHYSICS SYMPOSIUM 2018\",\"volume\":\"285 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAE SOLID STATE PHYSICS SYMPOSIUM 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5113201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5113201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tuning of Schottky barriers in borophene/MoS2 van der Waals heterostructure by external electric field
A first principle study of structural properties, band bending and tuning of schottky barrier height (SBH) of borophene/MoS2 Van der Waals heterostructure has been carried out within the framework of density functional theory (DFT). Studied binding energy shows that the interaction between borophene and MoS2 is weak. Consequently, both borophene and MoS2 are preserving their electronic nature in heterostructure. We have calculated the band bending 0.15 eV for borophene and -0.52 eV for MoS2 in borophene/MoS2 heterostructure which shows that the metal-semiconductor contact is in between p-type borophene and n-type MoS2. On the application of external electric field, tuning of schottky barriers has been achieved and metal-semiconductor contact gets transformed into ohmic contact which is important for the fast performance of electronic devices.A first principle study of structural properties, band bending and tuning of schottky barrier height (SBH) of borophene/MoS2 Van der Waals heterostructure has been carried out within the framework of density functional theory (DFT). Studied binding energy shows that the interaction between borophene and MoS2 is weak. Consequently, both borophene and MoS2 are preserving their electronic nature in heterostructure. We have calculated the band bending 0.15 eV for borophene and -0.52 eV for MoS2 in borophene/MoS2 heterostructure which shows that the metal-semiconductor contact is in between p-type borophene and n-type MoS2. On the application of external electric field, tuning of schottky barriers has been achieved and metal-semiconductor contact gets transformed into ohmic contact which is important for the fast performance of electronic devices.