复杂噪声模型的近似贝叶斯计算、随机算法和非局部均值

C. Kervrann, Philippe Roudot, F. Waharte
{"title":"复杂噪声模型的近似贝叶斯计算、随机算法和非局部均值","authors":"C. Kervrann, Philippe Roudot, F. Waharte","doi":"10.1109/ICIP.2014.7025573","DOIUrl":null,"url":null,"abstract":"In this paper, we present a stochastic NL-means-based de-noising algorithm for generalized non-parametric noise models. First, we provide a statistical interpretation to current patch-based neighborhood filters and justify the Bayesian inference that needs to explicitly accounts for discrepancies between the model and the data. Furthermore, we investigate the Approximate Bayesian Computation (ABC) rejection method combined with density learning techniques for handling situations where the posterior is intractable or too prohibitive to calculate. We demonstrate our stochastic Gamma NL-means (SGNL) on real images corrupted by non-Gaussian noise.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"19 1","pages":"2834-2838"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximate Bayesian computation, stochastic algorithms and non-local means for complex noise models\",\"authors\":\"C. Kervrann, Philippe Roudot, F. Waharte\",\"doi\":\"10.1109/ICIP.2014.7025573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a stochastic NL-means-based de-noising algorithm for generalized non-parametric noise models. First, we provide a statistical interpretation to current patch-based neighborhood filters and justify the Bayesian inference that needs to explicitly accounts for discrepancies between the model and the data. Furthermore, we investigate the Approximate Bayesian Computation (ABC) rejection method combined with density learning techniques for handling situations where the posterior is intractable or too prohibitive to calculate. We demonstrate our stochastic Gamma NL-means (SGNL) on real images corrupted by non-Gaussian noise.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"19 1\",\"pages\":\"2834-2838\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于随机均值的广义非参数噪声模型去噪算法。首先,我们对当前基于补丁的邻域过滤器提供统计解释,并证明贝叶斯推断需要明确解释模型和数据之间的差异。此外,我们研究了近似贝叶斯计算(ABC)拒绝方法结合密度学习技术来处理后验难以处理或过于禁止计算的情况。我们在被非高斯噪声破坏的真实图像上展示了我们的随机伽玛均值(SGNL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Bayesian computation, stochastic algorithms and non-local means for complex noise models
In this paper, we present a stochastic NL-means-based de-noising algorithm for generalized non-parametric noise models. First, we provide a statistical interpretation to current patch-based neighborhood filters and justify the Bayesian inference that needs to explicitly accounts for discrepancies between the model and the data. Furthermore, we investigate the Approximate Bayesian Computation (ABC) rejection method combined with density learning techniques for handling situations where the posterior is intractable or too prohibitive to calculate. We demonstrate our stochastic Gamma NL-means (SGNL) on real images corrupted by non-Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信