基于光滑塔克分解和低秩汉克尔约束的图像绘制

Q2 Computer Science
Jing Cai, Jiawei Jiang, Yibin Wang, Jian Zheng, Honghui Xu
{"title":"基于光滑塔克分解和低秩汉克尔约束的图像绘制","authors":"Jing Cai, Jiawei Jiang, Yibin Wang, Jian Zheng, Honghui Xu","doi":"10.1080/1206212X.2023.2219836","DOIUrl":null,"url":null,"abstract":"Image inpainting, aiming at exactly recovering missing pixels from partially observed entries, is typically an ill-posed problem. As a powerful constraint, low-rank priors have been widely applied in image inpainting to transform such problems into well-posed ones. However, the low-rank assumption of original visual data is only in an approximate mode, which in turn results in suboptimal recovery of fine-grained details, particularly when the missing rate is extremely high. Moreover, a single prior cannot faithfully capture the complex texture structure of an image. In this paper, we propose a joint usage of Smooth Tucker decomposition and Low-rank Hankel constraint (STLH) for image inpainting, which enables simultaneous capturing of the global low-rankness and local piecewise smoothness. Specifically, based on the Hankelization operation, the original image is mapped to a high-order structure for capturing more spatial and spectral information. By employing Tucker decomposition for optimizing the Hankel tensor and simultaneously applying Discrete Total Variation (DTV) to the Tucker factors, sharper edges are generated and better isotropic properties are enhanced. Moreover, to approximate the essential rank of the Tucker decomposition and avoid facing the uncertainty problem of the upper-rank limit, a reverse strategy is adopted to approximate the true rank of the Tucker decomposition. Finally, the overall image inpainting model is optimized by the well-known alternate least squares (ALS) algorithm. Extensive experiments show that the proposed method achieves state-of-the-art performance both quantitatively and qualitatively. Particularly, in the extreme case with 99% pixels missed, the results from STLH are averagely ahead of others at least 0.9dB in terms of PSNR values.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"32 1","pages":"421 - 432"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image inpainting via Smooth Tucker decomposition and Low-rank Hankel constraint\",\"authors\":\"Jing Cai, Jiawei Jiang, Yibin Wang, Jian Zheng, Honghui Xu\",\"doi\":\"10.1080/1206212X.2023.2219836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting, aiming at exactly recovering missing pixels from partially observed entries, is typically an ill-posed problem. As a powerful constraint, low-rank priors have been widely applied in image inpainting to transform such problems into well-posed ones. However, the low-rank assumption of original visual data is only in an approximate mode, which in turn results in suboptimal recovery of fine-grained details, particularly when the missing rate is extremely high. Moreover, a single prior cannot faithfully capture the complex texture structure of an image. In this paper, we propose a joint usage of Smooth Tucker decomposition and Low-rank Hankel constraint (STLH) for image inpainting, which enables simultaneous capturing of the global low-rankness and local piecewise smoothness. Specifically, based on the Hankelization operation, the original image is mapped to a high-order structure for capturing more spatial and spectral information. By employing Tucker decomposition for optimizing the Hankel tensor and simultaneously applying Discrete Total Variation (DTV) to the Tucker factors, sharper edges are generated and better isotropic properties are enhanced. Moreover, to approximate the essential rank of the Tucker decomposition and avoid facing the uncertainty problem of the upper-rank limit, a reverse strategy is adopted to approximate the true rank of the Tucker decomposition. Finally, the overall image inpainting model is optimized by the well-known alternate least squares (ALS) algorithm. Extensive experiments show that the proposed method achieves state-of-the-art performance both quantitatively and qualitatively. Particularly, in the extreme case with 99% pixels missed, the results from STLH are averagely ahead of others at least 0.9dB in terms of PSNR values.\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"32 1\",\"pages\":\"421 - 432\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212X.2023.2219836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2219836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

图像补绘,旨在准确地从部分观察到的条目中恢复缺失的像素,是一个典型的不适定问题。低秩先验作为一种强大的约束条件,被广泛应用于图像修复中,将这类问题转化为适定问题。然而,原始视觉数据的低秩假设仅处于近似模式,这反过来会导致细粒度细节的次优恢复,特别是在缺失率极高的情况下。此外,单一先验不能忠实地捕捉图像的复杂纹理结构。本文提出了一种将平滑Tucker分解和低秩Hankel约束(Low-rank Hankel constraint, STLH)联合用于图像绘制的方法,可以同时捕获全局低秩和局部分段平滑。具体而言,在汉化操作的基础上,将原始图像映射到高阶结构,以获取更多的空间和光谱信息。利用Tucker分解对Hankel张量进行优化,同时对Tucker因子进行离散全变分(DTV)处理,生成了更清晰的边缘,增强了图像的各向同性。此外,为了逼近Tucker分解的本质秩,避免面对秩上限的不确定性问题,采用逆向策略逼近Tucker分解的真秩。最后,采用交替最小二乘(ALS)算法对整个图像绘制模型进行优化。大量的实验表明,所提出的方法在定量和定性上都达到了最先进的性能。特别是,在99%像素缺失的极端情况下,STLH的结果在PSNR值方面平均领先于其他方法至少0.9dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image inpainting via Smooth Tucker decomposition and Low-rank Hankel constraint
Image inpainting, aiming at exactly recovering missing pixels from partially observed entries, is typically an ill-posed problem. As a powerful constraint, low-rank priors have been widely applied in image inpainting to transform such problems into well-posed ones. However, the low-rank assumption of original visual data is only in an approximate mode, which in turn results in suboptimal recovery of fine-grained details, particularly when the missing rate is extremely high. Moreover, a single prior cannot faithfully capture the complex texture structure of an image. In this paper, we propose a joint usage of Smooth Tucker decomposition and Low-rank Hankel constraint (STLH) for image inpainting, which enables simultaneous capturing of the global low-rankness and local piecewise smoothness. Specifically, based on the Hankelization operation, the original image is mapped to a high-order structure for capturing more spatial and spectral information. By employing Tucker decomposition for optimizing the Hankel tensor and simultaneously applying Discrete Total Variation (DTV) to the Tucker factors, sharper edges are generated and better isotropic properties are enhanced. Moreover, to approximate the essential rank of the Tucker decomposition and avoid facing the uncertainty problem of the upper-rank limit, a reverse strategy is adopted to approximate the true rank of the Tucker decomposition. Finally, the overall image inpainting model is optimized by the well-known alternate least squares (ALS) algorithm. Extensive experiments show that the proposed method achieves state-of-the-art performance both quantitatively and qualitatively. Particularly, in the extreme case with 99% pixels missed, the results from STLH are averagely ahead of others at least 0.9dB in terms of PSNR values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信