基于层次聚类的复杂网络粗粒度方法

Lin Liao, Zhen Jia, Yang Deng
{"title":"基于层次聚类的复杂网络粗粒度方法","authors":"Lin Liao, Zhen Jia, Yang Deng","doi":"10.4236/CN.2019.111003","DOIUrl":null,"url":null,"abstract":"With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into mesoscale networks. In this paper, a new coarse-graining method based on hierarchical clustering (HCCG) on complex networks is proposed. The network nodes are grouped by using the hierarchical clustering method, then updating the weights of edges between clusters extract the coarse-grained networks. A large number of simulation experiments on several typical complex networks show that the HCCG method can effectively reduce the network scale, meanwhile maintaining the synchronizability of the original network well. Furthermore, this method is more suitable for these networks with obvious clustering structure, and we can choose freely the size of the coarse-grained networks in the proposed method.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coarse-Graining Method Based on Hierarchical Clustering on Complex Networks\",\"authors\":\"Lin Liao, Zhen Jia, Yang Deng\",\"doi\":\"10.4236/CN.2019.111003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into mesoscale networks. In this paper, a new coarse-graining method based on hierarchical clustering (HCCG) on complex networks is proposed. The network nodes are grouped by using the hierarchical clustering method, then updating the weights of edges between clusters extract the coarse-grained networks. A large number of simulation experiments on several typical complex networks show that the HCCG method can effectively reduce the network scale, meanwhile maintaining the synchronizability of the original network well. Furthermore, this method is more suitable for these networks with obvious clustering structure, and we can choose freely the size of the coarse-grained networks in the proposed method.\",\"PeriodicalId\":91826,\"journal\":{\"name\":\"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/CN.2019.111003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/CN.2019.111003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着大数据的快速发展,现实网络的规模也在不断增加。为了减小网络规模,提出了一些将大尺度网络转化为中尺度网络的粗粒度方法。提出了一种基于层次聚类(HCCG)的复杂网络粗粒度方法。采用分层聚类方法对网络节点进行分组,更新聚类间的边权,提取粗粒度网络。在多个典型复杂网络上进行的大量仿真实验表明,HCCG方法可以有效地减小网络规模,同时很好地保持原有网络的同步性。此外,该方法更适合于具有明显聚类结构的网络,并且可以自由选择粗粒度网络的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse-Graining Method Based on Hierarchical Clustering on Complex Networks
With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into mesoscale networks. In this paper, a new coarse-graining method based on hierarchical clustering (HCCG) on complex networks is proposed. The network nodes are grouped by using the hierarchical clustering method, then updating the weights of edges between clusters extract the coarse-grained networks. A large number of simulation experiments on several typical complex networks show that the HCCG method can effectively reduce the network scale, meanwhile maintaining the synchronizability of the original network well. Furthermore, this method is more suitable for these networks with obvious clustering structure, and we can choose freely the size of the coarse-grained networks in the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信