基于TESS和IEMOCAP数据集的MFCC和机器学习的语音情感识别

Q4 Environmental Science
Muhammad Zafar Iqbal
{"title":"基于TESS和IEMOCAP数据集的MFCC和机器学习的语音情感识别","authors":"Muhammad Zafar Iqbal","doi":"10.33897/FUJEAS.V1I2.321","DOIUrl":null,"url":null,"abstract":"Our proposed methodology involving MFCC computation along with support Vector machine is used to perform the task of Speech Emotion Recognition (SER) of collectively five emotions named Angry, Happy, Neutral, Pleasant Surprise and Sadness. Two databases are used for this purpose: Toronto Emotion Speech Set (TESS) and Interactive Emotional Dyadic Motion Capture (IEMOCAP). We achieved 97% accuracy with TESS and 86% accuracy with IEMOCAP respectively.","PeriodicalId":36255,"journal":{"name":"Iranian Journal of Botany","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MFCC and Machine Learning Based Speech Emotion Recognition Over TESS and IEMOCAP Datasets\",\"authors\":\"Muhammad Zafar Iqbal\",\"doi\":\"10.33897/FUJEAS.V1I2.321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our proposed methodology involving MFCC computation along with support Vector machine is used to perform the task of Speech Emotion Recognition (SER) of collectively five emotions named Angry, Happy, Neutral, Pleasant Surprise and Sadness. Two databases are used for this purpose: Toronto Emotion Speech Set (TESS) and Interactive Emotional Dyadic Motion Capture (IEMOCAP). We achieved 97% accuracy with TESS and 86% accuracy with IEMOCAP respectively.\",\"PeriodicalId\":36255,\"journal\":{\"name\":\"Iranian Journal of Botany\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Botany\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33897/FUJEAS.V1I2.321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Botany","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33897/FUJEAS.V1I2.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

我们提出的方法包括MFCC计算和支持向量机来执行语音情感识别(SER)的任务,这五种情绪分别是愤怒、快乐、中性、惊喜和悲伤。为此使用了两个数据库:多伦多情感语音集(TESS)和交互式情感二元动作捕捉(IEMOCAP)。TESS的准确率为97%,IEMOCAP的准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFCC and Machine Learning Based Speech Emotion Recognition Over TESS and IEMOCAP Datasets
Our proposed methodology involving MFCC computation along with support Vector machine is used to perform the task of Speech Emotion Recognition (SER) of collectively five emotions named Angry, Happy, Neutral, Pleasant Surprise and Sadness. Two databases are used for this purpose: Toronto Emotion Speech Set (TESS) and Interactive Emotional Dyadic Motion Capture (IEMOCAP). We achieved 97% accuracy with TESS and 86% accuracy with IEMOCAP respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Botany
Iranian Journal of Botany Environmental Science-Ecology
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信