聚合物在法医分析中的前景

Macromol Pub Date : 2023-04-10 DOI:10.3390/macromol3020008
A. Díez-Pascual
{"title":"聚合物在法医分析中的前景","authors":"A. Díez-Pascual","doi":"10.3390/macromol3020008","DOIUrl":null,"url":null,"abstract":"Polymeric materials have recently attracted a lot of attention due to their potential applications in many fields, ranging from biomedicine, the food industry and environmental monitoring to electronic, energy storage and sensing devices. Their versatility, functionalization capability, chemical/physical stability, reusability, long shelf-life, as well as good mechanical and thermal properties, also make them idoneous candidates for use in forensic sciences, which deal with the investigation of crimes, finding relations between evidence and criminals. In particular, molecularly imprinted polymers (MIPs), designed based on the principle of generating template-specific polymeric cavities fitted to the target molecules in the presence of selected chemicals via non-covalent or covalent interactions, are highly suitable for forensic analysis. In addition, their combination with other compounds such as carbon nanomaterials can provide composites with improved properties to be used in the analysis of illicit drugs, doping substances, biological agents, toxins and so forth. In this article, recent applications of polymeric materials in the field of forensic analysis are discussed. The goal is to summarize their current uses and put forth a projection of their potential as promising alternatives for standard competitors.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"489 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perspectives of Polymers in Forensic Analysis\",\"authors\":\"A. Díez-Pascual\",\"doi\":\"10.3390/macromol3020008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric materials have recently attracted a lot of attention due to their potential applications in many fields, ranging from biomedicine, the food industry and environmental monitoring to electronic, energy storage and sensing devices. Their versatility, functionalization capability, chemical/physical stability, reusability, long shelf-life, as well as good mechanical and thermal properties, also make them idoneous candidates for use in forensic sciences, which deal with the investigation of crimes, finding relations between evidence and criminals. In particular, molecularly imprinted polymers (MIPs), designed based on the principle of generating template-specific polymeric cavities fitted to the target molecules in the presence of selected chemicals via non-covalent or covalent interactions, are highly suitable for forensic analysis. In addition, their combination with other compounds such as carbon nanomaterials can provide composites with improved properties to be used in the analysis of illicit drugs, doping substances, biological agents, toxins and so forth. In this article, recent applications of polymeric materials in the field of forensic analysis are discussed. The goal is to summarize their current uses and put forth a projection of their potential as promising alternatives for standard competitors.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"489 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol3020008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol3020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,高分子材料因其在生物医药、食品工业、环境监测、电子、储能和传感器件等诸多领域的潜在应用而备受关注。它们的通用性、功能化能力、化学/物理稳定性、可重复使用性、长保质期以及良好的机械和热性能,也使它们在法医科学中也成为献献性的候选人,法医科学涉及犯罪调查,寻找证据和罪犯之间的关系。特别是,分子印迹聚合物(MIPs)是基于通过非共价或共价相互作用在选定化学物质存在的情况下产生适合靶分子的模板特异性聚合物空腔的原理设计的,非常适合法医分析。此外,它们与碳纳米材料等其他化合物结合,可以提供性能更好的复合材料,用于分析违禁药物、兴奋剂、生物制剂、毒素等。本文综述了高分子材料在法医分析领域的最新应用。目的是总结它们目前的用途,并预测它们作为标准竞争者的有希望的替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perspectives of Polymers in Forensic Analysis
Polymeric materials have recently attracted a lot of attention due to their potential applications in many fields, ranging from biomedicine, the food industry and environmental monitoring to electronic, energy storage and sensing devices. Their versatility, functionalization capability, chemical/physical stability, reusability, long shelf-life, as well as good mechanical and thermal properties, also make them idoneous candidates for use in forensic sciences, which deal with the investigation of crimes, finding relations between evidence and criminals. In particular, molecularly imprinted polymers (MIPs), designed based on the principle of generating template-specific polymeric cavities fitted to the target molecules in the presence of selected chemicals via non-covalent or covalent interactions, are highly suitable for forensic analysis. In addition, their combination with other compounds such as carbon nanomaterials can provide composites with improved properties to be used in the analysis of illicit drugs, doping substances, biological agents, toxins and so forth. In this article, recent applications of polymeric materials in the field of forensic analysis are discussed. The goal is to summarize their current uses and put forth a projection of their potential as promising alternatives for standard competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信